Home
Class 12
MATHS
y = A cos (log x) + B sin (log x)...

`y = A cos (log x) + B sin (log x)

Text Solution

AI Generated Solution

To form a differential equation from the given function \( y = A \cos(\log x) + B \sin(\log x) \) without the arbitrary constants \( A \) and \( B \), we will follow these steps: ### Step 1: Differentiate \( y \) with respect to \( x \) Given: \[ y = A \cos(\log x) + B \sin(\log x) \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice|15 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice (2)|18 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos

Similar Questions

Explore conceptually related problems

If y =3 cos (log x) + 4 sin (log x), then x ^(2) (d ^(2) y )/( dx ^(2)) + x (dy)/(dx) =

If y=a cos ( log x )+ bsin (log x) where a ,b are parameters ,then x^(2) y''+ xy '=

If y = a cos (ln x)+ b sin (ln x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)=

if y=a sin (log x) + b cos (log x ) , then the differential equation without the parameter a and b is

Prove that the differential equation for a cos(log x)+b sin(log x) is x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=x^(n){a cos(log x)+b sin(log x)}, prove that x^(2)(d^(2)y)/(dx^(2))+(1-2n)(dy)/(dx)+(1+n^(2))y=0

If y=a cos(log x)+sin(log x), prove that (x^(2)d^(2))/(dx^(2))+x(dy)/(dx)+y=0

If f(x)=sin(log x) then f(xy)+f((x)/(y))-2f(x)cos(log y)=(A)cos(log x)(B)sin(log y)(C)cos(log(xy))(D)0

If y=3cos(log x)+4sin(log x), show that x^(2)y_(2)+xy_(1)+y=0

If y=3cos(log x)+4sin(log x), prove that x^(2)y_(2)+xy_(1)+y=0