Home
Class 12
MATHS
(x-y)^(2) (dy)/(dx) =a^(2), x -y =u...

`(x-y)^(2) (dy)/(dx) =a^(2), x -y =u`

Text Solution

Verified by Experts

` (x-y)^(2) (dy)/(dx) =a^(2)`
put ` x -y = u therefore x -u =y therefore 1- (du)/(dx) = (dy)/(dx) `
(1) becomes, `u^(2) (1 - (du)/(dx)) =a^(2)`
` u^(2) -u^(2) (du)/(dx) =a^(2) therefore u^(2) -a^(2) =u^(2) (du)/(dx) therefore dx= u^(2)/(u^(2) -a^(2)) du`
Integrating we get,
`int dx = int ((u^(2) -a^(2)) +a^(2))/(u^(2)-a^(2)) du+c_(1)`
`x = int 1 du + a^(2) int (du)/(u^(2)-a^(2)) +c_(1) =u +a^(2) . 1/(2a) log |(u-a)/(u+a)|+c_(1)`
` x =x -y +a/2 log |(x -y-a)/(x-y+a)|+c_(1)`
`-c_(1) + y=a/2 log |(x-y-a)/(x -y+a)|`
` -2c_(1)+2y = a log |(x -y-a)/(x-y+a)|`
` a log |(x-y-a)/(x-y+a)| =2y +c, " where " c = -2c_(1)`
This is the general solution.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice|15 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice (2)|18 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos

Similar Questions

Explore conceptually related problems

(x-y)(1-(dy)/(dx))=e^(y), where x-y=u A) ue^u-e^u=e^(x)+c B) u^(2)=e^(x)+c C) u^(2)=(1)/(2)e^(x)+c D) u^(2)e^(x)=2x+c

Using the substitution shown against them : cos (x-2y) + 2(dy)/(dx) = 0, x-2y = u

x(dy)/(dx)-y=2x^(2)y

x (dy)/(dx) + 2y = x ^(2)

(dy)/(dx)-(y)/(x)=2x^(2)

(2x+y)(dy)/(dx)=x+2y=

x^(2)(dy)/(dx)=(y(x+y))/(2)

sec^(2)(x-2y)(1-2(dy)/(dx))=1, where x-2y=u

x+y(dy)/(dx) =x^(2) +y^(2)

(x-y+1)(dy)/(dx)=x-y+2 , where x-y=u