Home
Class 12
MATHS
sec^(2) y tan x dy + sec^(2) x tan y dx ...

`sec^(2) y tan x dy + sec^(2) x tan y dx = 0 , " when " x =y = pi/4`

Text Solution

Verified by Experts

The given D.E .is ` sec^(2)y tan x dy + sec^(2) x tan y dx = 0`
`(sec^(2)y)/(tany) dy + (sec^(2)x)/tanx dx =0`
`int (sec^(2)y)/(tan y) dy + int (sec^(2)x)/(tanx) dx=c_(1)`
Each integral is of the type
` int (f'(x))/(f(x) dx = log|f(x)|+c`
`log |tany| + log | tan x| = log c, " where" c_(1) = log c`
log | tan x tan y| = log c
This is the general solution ,.
When ` x=y = pi/4,` we get s,
` tan pi/4. tan pi/4 " " therefore c=1`
the particular solution is tan x tan y=1
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice|15 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice (2)|18 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos

Similar Questions

Explore conceptually related problems

sec^(2)x tany dx + sec^(2)y tan x dy = dy =0

Find the particular solution of the following : sec^(2)x tan y dx - sec^(2)y tan x dy = 0 , given that y= pi/6, x= pi/3 .

Solve sec^(2)xtan y dx+sec^(2) y tan x dy=0 .

3e^(x) tan y dx + (1+e^(x)) sec^(2) dy =0 , " when" x = 0 and y = pi

sec ^ (2) y (dy) / (dx) + x tan y = x ^ (3)

Solve (1+x^(2))sec^(2)y dy +2 x tany dx =0, " given that " y = (pi)/(4) " when " x =1 .

(dy)/(dx) + 2y tan x = sec x

If y sec x+ tan x +x^2 y=0 , then (dy)/(dx) =

x + y (dy)/(dx) = sec(x^(2) +y^(2)) " when " x =y =0