Home
Class 12
MATHS
(dy)/(dx) =e^(2y) cos x, " when " x = pi...

`(dy)/(dx) =e^(2y) cos x, " when " x = pi/6, y = 0`

Text Solution

AI Generated Solution

To solve the differential equation \(\frac{dy}{dx} = e^{2y} \cos x\) with the initial condition \(x = \frac{\pi}{6}\) and \(y = 0\), we can follow these steps: ### Step 1: Rearranging the Equation We start with the given equation: \[ \frac{dy}{dx} = e^{2y} \cos x \] We can rearrange this to separate the variables \(y\) and \(x\): ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice|15 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice (2)|18 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos

Similar Questions

Explore conceptually related problems

(y+ x (dy)/(dx)) sin xy =cos x, " when " x= 0 , y =0

(dy)/(dx) -y =e^(x ) " when" x=0 and y=1

y-x (dy)/dx = 0 , " when " x =2 , y =3

(x+1)(dy)/(dx) -1 = 2e^(-y) , y=0, " when " x=1

(dy)/(dx)=2e^(x)y^(3) , when x=0, y=(1)/(2)

3e^(x) tan y dx + (1+e^(x)) sec^(2) dy =0 , " when" x = 0 and y = pi

If y=y(x) is the solution of the equation e^(sin y) cos y""(dy)/(dx) +e^(sin y) cos x = cos x,y (0)=0, then 1+y ((pi)/(6)) +( sqrt(3))/(2) y((pi)/(3)) +(1)/( sqrt(2)) y((pi)/(4)) is equal to

If (dy)/(dx)=e^(-2y) and y=0 when x=5, then the value of x for y=3 is

cos (x+y) dy =dx , when x =0 and y =0