Home
Class 12
MATHS
3e^(x) tan y dx + (1+e^(x)) sec^(2) dy =...

`3e^(x) tan y dx + (1+e^(x)) sec^(2) dy =0 , " when" x = 0 and y = pi`

Text Solution

Verified by Experts

`3e^(x) tan y dx + (1+e^(x)) sec^(2) y dy =0`
`(3e^(x))/(1 +e^(x)) dx + (sec^(2)y)/(tan y) dy=0`
Intergrating , we set
` 3 int (e^(x))/(1 +e^(x)) dx + int (sec^(2)y)/(tan y) dy =c_(1)`
each of these integrals of the type
` int (f'(x))/(f(x)) dx = log |f (x)|+c`
the general solution is
` 3 log |1 +e^(x)| + log |tany | = log c, " when " c_(1) = log c`
`log | (1+e^(x))^(3)| + log | tan y| = log c`
` log | (1+e^(x))^(3) tan y| = log c `
Now , x = 0 and ` y =pi`
` (1+e^(0))^(3) tan pi =c " " therefore c=0`
the particular solution is
` (1 + e^(x))^(3) tan y = 0`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice|15 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice (2)|18 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos

Similar Questions

Explore conceptually related problems

Solve the following differential equations 3e^(x) tan y dx +(1-e^(x)) sec^2y dy=0" given that "y= (pi)/(4), " when "x=1 .

(dy)/(dx) -y =e^(x ) " when" x=0 and y=1

Solve the following differential equation: 3e^(x)tan ydx+(2-e^(x))sec^(2)ydy=0, given that when x=0,y=(pi)/(4)

sec^(2) y tan x dy + sec^(2) x tan y dx = 0 , " when " x =y = pi/4

(dy)/(dx) =e^(2y) cos x, " when " x = pi/6, y = 0

x + y (dy)/(dx) = sec(x^(2) +y^(2)) " when " x =y =0

What is the solution of the differential equation 3e^(x) tan y dx + (1 + e^(x)) sec^(2) y dy = 0 ?

Find the particular solution of the following : sec^(2)x tan y dx - sec^(2)y tan x dy = 0 , given that y= pi/6, x= pi/3 .

(2x -2y+3) dx -(x-y+1) dy=0 , " when" x=0, y=1