Home
Class 12
MATHS
x + y (dy)/(dx) = sec(x^(2) +y^(2)) " w...

`x + y (dy)/(dx) = sec(x^(2) +y^(2)) " when " x =y =0`

Text Solution

AI Generated Solution

To solve the differential equation \( x + y \frac{dy}{dx} = \sec(x^2 + y^2) \) with the initial condition \( x = 0 \) and \( y = 0 \), we can follow these steps: ### Step 1: Rewrite the equation The given equation is: \[ x + y \frac{dy}{dx} = \sec(x^2 + y^2) \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice|15 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice (2)|18 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos

Similar Questions

Explore conceptually related problems

x+y(dy)/(dx)=sec(x^(2)+y^(2)), where x^(2)+y^(2)=u

x(dy)/(dx)-y=2x^(2)sec x

(dy)/(dx) = 3^(x+y), " when " x=y=0

(dy)/(dx)+y tan x=sec x

(dy)/(dx)+y sec x=tan x

sec^(2) y tan x dy + sec^(2) x tan y dx = 0 , " when " x =y = pi/4

2 (dy) / (dx) -y sec x = y ^ (3) tan x

(dy)/(dx)=2e^(x)y^(3) , when x=0, y=(1)/(2)

(dy)/(dx) -y =e^(x ) " when" x=0 and y=1