Home
Class 12
MATHS
(dy)/(dx) -y =e^(x ) " when" x=0 and y=1...

`(dy)/(dx) -y =e^(x ) " when" x=0 and y=1`

Text Solution

AI Generated Solution

To solve the differential equation \(\frac{dy}{dx} - y = e^{x}\) with the initial condition \(y(0) = 1\), we will follow these steps: ### Step 1: Identify the type of differential equation This is a first-order linear differential equation of the form: \[ \frac{dy}{dx} + P(x)y = Q(x) \] where \(P(x) = -1\) and \(Q(x) = e^{x}\). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice|15 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice (2)|18 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos

Similar Questions

Explore conceptually related problems

(dy)/(dx) = 3^(x+y), " when " x=y=0

(dy)/(dx)-e^(x)=ye^(x) , when x=0, y=1

cos (x+y) dy =dx , when x =0 and y =0

(dy)/(dx)=2e^(x)y^(3) , when x=0, y=(1)/(2)

(x+1)(dy)/(dx) -1 = 2e^(-y) , y=0, " when " x=1

3e^(x) tan y dx + (1+e^(x)) sec^(2) dy =0 , " when" x = 0 and y = pi

The Particular solution of the differential equation (x+1)(dy)/(dx)-2e^(-y)=1 when x=1 , y=0

(dy)/(dx) =e^(2y) cos x, " when " x = pi/6, y = 0

(1+e^(x))/(y)(dy)/(dx)=e^(x), when y=1, x=0

The solution of (dy)/(dx) -y=e^(x) , y(0) = 1 , is