Home
Class 12
MATHS
(1) y = ae^(4x) -be^(-3x) +c (2) xy = ...

`(1) y = ae^(4x) -be^(-3x) +c (2) xy = ae^(5x) +be^(-5x)`

Text Solution

Verified by Experts

The correct Answer is:
(1) `(d^(3)y)/(dx^(3)) -(d^(2)y)/(dx^(2)) -12(dy)/(dx)=0` (2) `x(d^(3)y)/(dx^(2)) +2(dy)/(dx) = 25 xy `
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice (3)|6 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice (4)|11 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice|15 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos

Similar Questions

Explore conceptually related problems

(1)/(ae^(x)+be^(-x))

Form the differential equations by elimniating the arbitary constants from the following equations : (1) y =c^(2)+c/x (2) x^(3) +y^(3) = 4ax (3) y = Ae^(5x) + Be^(-5x) (4) y = A cos alpha x + B sin alpha x

If y=ae^(x)+be^(-x)+c," then "y'''=

Add: (i) 3a - 2b + 5c, 2a + 5b - 7c, -a - b + c (ii) 8a - 6ab + 5b, -6a - ab - 8b, -4a + 2ab + 3b (iii) 2x^(3) - 3x^(2) + 7x - 8, -5x^(3) + 2x^(2) - 4x + 1, 3 - 6x + 5x^(2) - x^(3) (iv) 2x^(2) - 8xy + 7y^(2) - 8xy^(2), 2xy^(2) + 6xy - y^(2) + 3x^(2), 4y^(2) - xy - x^(2) + xy^(2) (v) x^(3) + y^(3) - z^(3) + 3xyz, - x^(3) + y^(3) + z^(3) - 6xyz, - x^(3) - y^(3) - z^(3) - 8xyz (vi) 2 + x - x^(2) + 6x^(3). -6 - 2x + 4x^(2) - 3x^(3). 2 + x^(2). 3 - x^(3) + 4x - 2x^(2)

Factorise 25x^(2) - 30xy + 9y^(2) . The following steps are involved in solving the above problem . Arrange them in sequential order . (A) (5x - 3y)^(2) " " [ because a^(2) - 2b + b^(2) = (a-b)^(2)] (B) (5x)^(2) - 30xy + (3y)^(2) = (5x)^(2) - 2(5x)(3y) + (3y)^(2) (C) (5x - 3y) (5x - 3y)

Subtract: (i) 5a + 7b - 2c from 3a - 7b + 4c (ii) a - 2b - 3c from -2a + 5b - 4c (iii) 5x^(2) - 3xy + y^(2) from 7x^(2) - 2xy - 4y^(2) (iv) 6x^(3) - 7x^(2) + 5x - 3 from 4 - 5x + 6x^(2) - 8x^(3) (v) x^(3) + 2x^(2) y + 6xy^(2) - y^(3) from y^(3) - 3xy^(2) - 4x^(2) (vi) -11 x^(2) y^(2) + 7xy - 6 from 9x^(2) y^(2) - 6xy + 9 (vii) -2a + b + 6d from 5a - 2b - 3c

Which of the following expressions are exactly equal in value ? 1. ( 3x - y) ^(2) - ( 5x ^(2) - 2xy) 2. (2x - y ) ^(2) 3. (2x pm y ) ^(2) - 2 xy 4. (2x +3y ) ^(2) - 2 xy

Add: (i) 3x, 7x (ii) 7y, -9y (iii) 2xy, 5xy, -xy (iv) 3x, 2y (v) 2x^(2), -3x^(2), 7x^(2) (vi) 7xyz, -5xyz, 9xyz, - 8xyz (vii) 6a^(3) , - 4a^(3), 10 a^(3), - 8a^(3) (viii) x^(2) - a^(2), -5x^(2) + 2a^(2), -4x^(2) + 4a^(2)

Form the differential equations by eliminating the arbitrary constants from the following equations : 1. (1) xy = Ae^(x) + Be^(-x) + x^(2) (2) y= e^(-x) (A cos 2x + B sin 2x)