Home
Class 12
MATHS
(dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))...

`(dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \(\frac{dy}{dx} = \sqrt{\frac{1 - y^2}{1 - x^2}}\), we can separate the variables and integrate both sides. Here’s a step-by-step solution: ### Step 1: Separate the Variables We start with the given equation: \[ \frac{dy}{dx} = \sqrt{\frac{1 - y^2}{1 - x^2}} \] We can rewrite this as: \[ \frac{dy}{\sqrt{1 - y^2}} = \sqrt{\frac{1}{1 - x^2}} \, dx \] ### Step 2: Integrate Both Sides Now we integrate both sides. The left side is integrated with respect to \(y\) and the right side with respect to \(x\): \[ \int \frac{dy}{\sqrt{1 - y^2}} = \int \frac{dx}{\sqrt{1 - x^2}} \] ### Step 3: Solve the Integrals The integral \(\int \frac{dy}{\sqrt{1 - y^2}}\) is known to be: \[ \arcsin(y) + C_1 \] Similarly, the integral \(\int \frac{dx}{\sqrt{1 - x^2}}\) is: \[ \arcsin(x) + C_2 \] Thus, we can write: \[ \arcsin(y) = \arcsin(x) + C \] where \(C = C_2 - C_1\). ### Step 4: Solve for \(y\) To express \(y\) in terms of \(x\), we take the sine of both sides: \[ y = \sin(\arcsin(x) + C) \] ### Step 5: Use the Sine Addition Formula Using the sine addition formula, we can express \(y\) as: \[ y = \sin(\arcsin(x)) \cos(C) + \cos(\arcsin(x)) \sin(C) \] Since \(\sin(\arcsin(x)) = x\) and \(\cos(\arcsin(x)) = \sqrt{1 - x^2}\), we have: \[ y = x \cos(C) + \sqrt{1 - x^2} \sin(C) \] ### Final Solution Letting \(k = \cos(C)\) and \(m = \sin(C)\), we can express the final solution as: \[ y = kx + m\sqrt{1 - x^2} \] where \(k\) and \(m\) are constants determined by initial conditions. ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice (3)|6 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice (4)|11 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice|15 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos

Similar Questions

Explore conceptually related problems

If y=sin(2sin^(-1)x) , show that: (dy)/(dx)=2sqrt((1-y^(2))/(1-x^(2))) .

General solution of (dy)/(dx)-(sqrt(1-y^(2)))/(sqrt(1-x^(2)))=0 is

(y)/(x)(dy)/(dx)=sqrt(1+x^(2)+y^(2)+x^(2)y^(2))

Find the (dy)/(dx) of sqrt(1-x^2)+sqrt(1-y^2)=a(x-y)

(dy)/(dx)+(y)/(x)=(1)/(sqrt(1+x^(2)))

If y=tan^(-1)[(x-sqrt(1-x^(2)))/(x+sqrt(1-x^(2)))]," then "(dy)/(dx)=

If sqrt(x) + sqrt(y) = sqrt(a) , then (dy)/(dx) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt(a))

y=sqrt(x^(2)+1)-log((1)/(x)+sqrt(1+(1)/(x^(2)))), find (dy)/(dx)

If y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))

y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))