Home
Class 12
MATHS
y^(3) - (dy)/(dx) =x^(2) (dy)/(dx)...

`y^(3) - (dy)/(dx) =x^(2) (dy)/(dx) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \( y^{(3)} - \frac{dy}{dx} = x^{2} \frac{dy}{dx} \), we will follow these steps: ### Step 1: Rearrange the equation We start with the given equation: \[ y^{(3)} - \frac{dy}{dx} = x^{2} \frac{dy}{dx} \] We can rearrange it to isolate the terms involving \(\frac{dy}{dx}\): \[ y^{(3)} = x^{2} \frac{dy}{dx} + \frac{dy}{dx} \] This simplifies to: \[ y^{(3)} = (x^{2} + 1) \frac{dy}{dx} \] ### Step 2: Separate the variables Now, we can separate the variables by dividing both sides by \((x^{2} + 1)\) and multiplying both sides by \(dx\): \[ \frac{dx}{x^{2} + 1} = \frac{dy}{y^{3}} \] ### Step 3: Integrate both sides Next, we integrate both sides: \[ \int \frac{dx}{x^{2} + 1} = \int \frac{dy}{y^{3}} \] The left side integrates to: \[ \tan^{-1}(x) + C_1 \] And the right side integrates to: \[ -\frac{1}{2y^{2}} + C_2 \] Thus, we have: \[ \tan^{-1}(x) = -\frac{1}{2y^{2}} + C \] where \(C = C_2 - C_1\). ### Step 4: Rearranging the equation Rearranging the equation gives: \[ \tan^{-1}(x) + \frac{1}{2y^{2}} = C \] ### Step 5: Final form of the solution To express \(y\) in terms of \(x\), we can rearrange this equation: \[ \frac{1}{2y^{2}} = C - \tan^{-1}(x) \] Thus, \[ y^{2} = \frac{1}{2(C - \tan^{-1}(x))} \] And finally, \[ y = \pm \sqrt{\frac{1}{2(C - \tan^{-1}(x))}} \] ### Final Solution The general solution of the differential equation is: \[ y = \pm \sqrt{\frac{1}{2(C - \tan^{-1}(x))}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice (3)|6 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice (4)|11 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice|15 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos

Similar Questions

Explore conceptually related problems

Solve the following differential equations : y -x (dy)/(dx) =3 (1+x^(2) (dy)/(dx))

(dy)/(dx)-2y=x

y^(2)-x^(2) (dy)/(dx) = xy(dy)/(dx)

(y-x(dy)/(dx))=3(1-x^(2)(dy)/(dx))

y-x(dy)/(dx)=x+y(dy)/(dx)

y-x(dy)/(dx)=a(y^(2)+(dy)/(dx))is

Solve the following differential equations: (dy)/(dx)=1+x+y+xy( ii) y-x(dy)/(dx)=a(y^(2)+(dy)/(dx))

3x^(2)y+(dy)/(dx)=0

The solution of (y - (xdy)/dx)= 3 (1-x^(2)(dy)/(dx)) is

(dy)/(dx)=(x+2)/(2y-3)