Home
Class 12
MATHS
cosx cos ydy - sin x sin y dx =0...

` cosx cos ydy - sin x sin y dx =0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \( \cos x \cos y \, dy - \sin x \sin y \, dx = 0 \), we will follow a systematic approach. ### Step 1: Rearranging the Equation We start by rearranging the equation to isolate the differentials: \[ \cos x \cos y \, dy = \sin x \sin y \, dx \] Now, we can separate the variables: \[ \frac{dy}{\sin y} = \frac{\sin x}{\cos x} \, dx \] ### Step 2: Simplifying the Right Side We know that \( \frac{\sin x}{\cos x} = \tan x \), so we can rewrite the equation as: \[ \frac{dy}{\sin y} = \tan x \, dx \] ### Step 3: Integrating Both Sides Now we will integrate both sides: \[ \int \frac{dy}{\sin y} = \int \tan x \, dx \] The left side integrates to: \[ \int \frac{dy}{\sin y} = \log |\tan(\frac{y}{2})| + C_1 \] And the right side integrates to: \[ \int \tan x \, dx = -\log |\cos x| + C_2 \] ### Step 4: Combining the Results Combining the results of the integrals, we have: \[ \log |\tan(\frac{y}{2})| = -\log |\cos x| + C \] where \( C = C_2 - C_1 \). ### Step 5: Exponentiating Both Sides Exponentiating both sides gives us: \[ |\tan(\frac{y}{2})| = \frac{C}{|\cos x|} \] ### Step 6: Final Solution Thus, we can express the solution as: \[ \tan(\frac{y}{2}) \cos x = C \] where \( C \) is a constant.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice (3)|6 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice (4)|11 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice|15 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos

Similar Questions

Explore conceptually related problems

cos x cos y dy - sin x sin y dx=0

Solution of the differential equation cos x cos y dy -sin x sin y dx=0 is

Solution of the differential equation sin x. cos y dy + cos x. sin y dx = 0 is

The solution of the differential equation sin x cos ydy+cos x sin ydx=0 is

Solve the differential equation cos ydy+cos x sin ydx=0

The solution the differential equation "cos x sin y dx" + "sin x cos y dy" =0 is

(dy) / (dx) = - (cos x (3cos y-7sin x-3)) / (sin y (3sin x-7cos y + 7))

If cos(x - y)= -1 , show that cos x + cos y = 0 and sin x + sin y = 0 .

Find the solution of the differential equation cos ydy+cos x sin ydx=0 given that y=pi/2, when x=pi/2

Solution of differential equation (2x cos y + y ^ (2) cos x) dx (2y sin xx ^ (2) sin y) dx = 0 is (a) x ^ (2) cos y + y ^ (2) sin x = C (b) x cos yy sin x = C (c) x ^ (2) cos ^ (2) y + y ^ (2) sin ^ (2) x = C (d) x cos y + y sin x = C