Home
Class 12
MATHS
(dy)/(dx) =y ((e^(3x)-e^(-3x))/(e^(3x) +...

`(dy)/(dx) =y ((e^(3x)-e^(-3x))/(e^(3x) +e^(-3x)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \[ \frac{dy}{dx} = y \left( \frac{e^{3x} - e^{-3x}}{e^{3x} + e^{-3x}} \right), \] we will follow these steps: ### Step 1: Separate the variables We can rearrange the equation to separate the variables \(y\) and \(x\): \[ \frac{dy}{y} = \left( \frac{e^{3x} - e^{-3x}}{e^{3x} + e^{-3x}} \right) dx. \] ### Step 2: Integrate both sides Now we will integrate both sides. The left side becomes: \[ \int \frac{dy}{y} = \ln |y| + C_1. \] For the right side, we need to simplify the expression: \[ \int \left( \frac{e^{3x} - e^{-3x}}{e^{3x} + e^{-3x}} \right) dx. \] Let \( t = e^{3x} \), then \( dt = 3e^{3x} dx \) or \( dx = \frac{dt}{3t} \). Substituting this into the integral gives: \[ \int \frac{t - \frac{1}{t}}{t + \frac{1}{t}} \cdot \frac{dt}{3t} = \frac{1}{3} \int \frac{t^2 - 1}{t^2 + 1} \cdot \frac{dt}{t^2}. \] This simplifies to: \[ \frac{1}{3} \int \left( 1 - \frac{2}{t^2 + 1} \right) dt = \frac{1}{3} \left( t - 2 \tan^{-1}(t) \right) + C_2. \] Substituting back \( t = e^{3x} \): \[ \frac{1}{3} \left( e^{3x} - 2 \tan^{-1}(e^{3x}) \right) + C_2. \] ### Step 3: Combine results Setting the integrals equal gives: \[ \ln |y| = \frac{1}{3} \left( e^{3x} - 2 \tan^{-1}(e^{3x}) \right) + C, \] where \( C = C_2 - C_1 \). ### Step 4: Exponentiate to solve for \(y\) Exponentiating both sides results in: \[ y = e^{\frac{1}{3} \left( e^{3x} - 2 \tan^{-1}(e^{3x}) \right) + C} = k e^{\frac{1}{3} \left( e^{3x} - 2 \tan^{-1}(e^{3x}) \right)}, \] where \( k = e^C \). ### Final Solution Thus, the solution to the differential equation is: \[ y = k e^{\frac{1}{3} \left( e^{3x} - 2 \tan^{-1}(e^{3x}) \right)}. \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice (3)|6 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice (4)|11 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice|15 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos

Similar Questions

Explore conceptually related problems

(1)/(e^(3x)+e^(-3x))

int(dx)/(e^(3x)+e^(-3x))=

If e^(x)+e^(y)=e^(x+y) , prove that : (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) .

Solve: (dy)/(dx)=(1)/(sin^(4)x+cos^(4)x) (ii) (dy)/(dx)=(3e^(2x)+3e^(4x))/(e^(x)+e^(-x))

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0

Find (dy)/(dx) if y=e^(x)*e^(x^(2))*e^(x^(3))*e^(x^(4))

Find (dy)/(dx) , if y=e^(x^(3))

int(e^(3x)-1)/(e^(x))dx

int(e^(3x))/((5+e^(3x))^(4))dx

If y=x+e^(x), then (d^(2)x)/(dy^(2)) is (a) e^(x)(b)-(e^(x))/((1+e^(x))^(3))(c)-(e^(x))/((1+e^(x))^(3))(d)(-1)/((1+e^(x))^(3))