Home
Class 12
MATHS
2e^(x+2y) dx -3dy =0...

`2e^(x+2y) dx -3dy =0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \( 2e^{x + 2y} dx - 3dy = 0 \), we will follow these steps: ### Step 1: Rearranging the Equation We start by rearranging the given equation: \[ 2e^{x + 2y} dx = 3 dy \] Now, we can separate the variables: \[ \frac{dy}{dx} = \frac{2}{3} e^{x + 2y} \] ### Step 2: Separating Variables Next, we separate the variables \( y \) and \( x \): \[ \frac{dy}{e^{2y}} = \frac{2}{3} e^{x} dx \] This can be rewritten as: \[ e^{-2y} dy = \frac{2}{3} e^{x} dx \] ### Step 3: Integrating Both Sides Now we will integrate both sides: \[ \int e^{-2y} dy = \int \frac{2}{3} e^{x} dx \] The left side integrates to: \[ -\frac{1}{2} e^{-2y} \] The right side integrates to: \[ \frac{2}{3} e^{x} + C \] So we have: \[ -\frac{1}{2} e^{-2y} = \frac{2}{3} e^{x} + C \] ### Step 4: Rearranging the Equation Now we will rearrange the equation to isolate \( e^{-2y} \): \[ e^{-2y} = -\frac{4}{3} e^{x} - 2C \] Let \( C' = -2C \) (where \( C' \) is a new constant): \[ e^{-2y} = -\frac{4}{3} e^{x} + C' \] ### Step 5: Final Form Finally, we can express the solution in a more standard form: \[ 4 e^{x} + 3 e^{-2y} + C = 0 \] where \( C \) is a constant. ### Summary of the Solution The solution to the differential equation \( 2e^{x + 2y} dx - 3dy = 0 \) is: \[ 4 e^{x} + 3 e^{-2y} + C = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice (3)|6 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice (4)|11 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice|15 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos

Similar Questions

Explore conceptually related problems

3e^(x) tan y dx + (1+e^(x)) sec^(2) dy =0 , " when" x = 0 and y = pi

Solve the differential equation e^(x) tan y dx + (1-e^(x))sec^(2) y dy = 0

The solution of e^(2x-3y)dx+e^(2y-3x)dy=0 is

If (dy)/(dx)=e^(-2y) and y=0 when x=5, then the value of x for y=3 is

Find the general solution of each of the following differential equations: e^(2x-3y)dx+e^(2y-3x)dy =0

(dy)/(dx)=e^(-2y) and y=0 whenx =5, the valueof x for y=3

y(x^(2)y+e^(x))dx-e^(x)dy=0

(2x -2y+3) dx -(x-y+1) dy=0 , " when" x=0, y=1

e ^ (y) dx + x ^ (2) (2 + e ^ (y)) dy = 0

Solve (1+2e^(x//y))dx+2e^(x//y)(1-x//y)dy=0.