Home
Class 12
MATHS
(dy)/(dx) = x sqrt(25 -x^(2))...

` (dy)/(dx) = x sqrt(25 -x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \( \frac{dy}{dx} = x \sqrt{25 - x^2} \), we will follow these steps: ### Step 1: Separate the Variables We can separate the variables \( y \) and \( x \) by moving all terms involving \( y \) to one side and all terms involving \( x \) to the other side: \[ dy = x \sqrt{25 - x^2} \, dx \] ### Step 2: Integrate Both Sides Next, we will integrate both sides. The left side integrates to \( y \), and we will integrate the right side: \[ \int dy = \int x \sqrt{25 - x^2} \, dx \] This gives us: \[ y = \int x \sqrt{25 - x^2} \, dx \] ### Step 3: Use Substitution for the Integral To solve the integral \( \int x \sqrt{25 - x^2} \, dx \), we can use the substitution: \[ t = 25 - x^2 \quad \Rightarrow \quad dt = -2x \, dx \quad \Rightarrow \quad dx = -\frac{dt}{2x} \] From the substitution, we also have \( x^2 = 25 - t \), so \( x = \sqrt{25 - t} \). ### Step 4: Substitute and Simplify Now, substituting \( t \) into the integral: \[ \int x \sqrt{25 - x^2} \, dx = \int x \sqrt{t} \left(-\frac{dt}{2x}\right) = -\frac{1}{2} \int \sqrt{t} \, dt \] This simplifies to: \[ -\frac{1}{2} \cdot \frac{2}{3} t^{3/2} = -\frac{1}{3} t^{3/2} \] ### Step 5: Substitute Back Now we substitute back \( t = 25 - x^2 \): \[ -\frac{1}{3} (25 - x^2)^{3/2} \] ### Step 6: Write the Final Solution Thus, we have: \[ y = -\frac{1}{3} (25 - x^2)^{3/2} + C \] where \( C \) is the constant of integration. ### Final Answer The solution to the differential equation is: \[ y = -\frac{1}{3} (25 - x^2)^{3/2} + C \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice (3)|6 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice (4)|11 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice|15 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos

Similar Questions

Explore conceptually related problems

(dy)/(dx)=sqrt(y-x)

The solution of (dy)/(dx) = (y+sqrt(x^(2) -y^(2)))/x is

x(dy)/(dx)-y=2sqrt(y^(2)-x^(2))

find value of (dy)/(dx)y=(x)/(sqrt(a^(2)-x^(2)))

x(dy)/(dx)=y+sqrt(x^(2)-y^(2))

solve x(dy)/(dx)-y=sqrt(x^(2)+y^(2))

Find (dy)/(dx) of y=(sqrt(x)(2x+3)^2)/(sqrt(x+1))

General solution of differential equation x^(2)(x+y(dy)/(dx))+(x(dy)/(dx)-y)sqrt(x^(2)+y^(2))=0 is

Find (dy)/(dx) for y=log(x+sqrt(a^(2)+x^(2)))

Ify={x+sqrt(x^(2)+a^(2))}^(n), provethat (dy)/(dx)=(ny)/(sqrt(x^(2)+a^(2)))+a