Home
Class 12
MATHS
log ((dy)/(dx)) =2x +3y...

`log ((dy)/(dx)) =2x +3y `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation given by \[ \log\left(\frac{dy}{dx}\right) = 2x + 3y, \] we will follow these steps: ### Step 1: Exponentiate both sides We start by exponentiating both sides to eliminate the logarithm: \[ \frac{dy}{dx} = e^{2x + 3y}. \] ### Step 2: Rearranging the equation Next, we can rearrange the equation to separate the variables \(y\) and \(x\): \[ \frac{dy}{e^{3y}} = e^{2x} dx. \] ### Step 3: Integrate both sides Now, we integrate both sides. The left side requires integration with respect to \(y\) and the right side with respect to \(x\): \[ \int \frac{dy}{e^{3y}} = \int e^{2x} dx. \] The left side can be rewritten as: \[ \int e^{-3y} dy = \int e^{2x} dx. \] ### Step 4: Solve the integrals Now we compute the integrals: - For the left side: \[ \int e^{-3y} dy = -\frac{1}{3} e^{-3y} + C_1, \] - For the right side: \[ \int e^{2x} dx = \frac{1}{2} e^{2x} + C_2. \] ### Step 5: Combine the results Setting the results of the integrals equal to each other gives us: \[ -\frac{1}{3} e^{-3y} = \frac{1}{2} e^{2x} + C, \] where \(C = C_2 - C_1\) is a constant. ### Step 6: Rearranging the equation To express \(e^{-3y}\) in terms of \(x\), we can multiply through by -3: \[ e^{-3y} = -\frac{3}{2} e^{2x} - 3C. \] ### Step 7: Solve for \(y\) Taking the natural logarithm of both sides to isolate \(y\): \[ -3y = \log\left(-\frac{3}{2} e^{2x} - 3C\right), \] thus, \[ y = -\frac{1}{3} \log\left(-\frac{3}{2} e^{2x} - 3C\right). \] ### Final Solution The final solution to the differential equation is: \[ y = -\frac{1}{3} \log\left(-\frac{3}{2} e^{2x} - 3C\right). \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice (3)|6 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice (4)|11 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice|15 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos

Similar Questions

Explore conceptually related problems

log((dy)/(dx))=2x+3 A) y=log(2x+3)+c B) 2y=e^(2x+3)+c C) sqrty=log(2x+3)+c D) 2e^(y)+3=logy+c

(x log x ) (dy)/(dx) + y = 2 log x

The solution of x log x (dy)/(dx) + y = 2/xlog x is

Degree of differential equation log((dy)/(dx))^(2)=3x+4y

General solution of (dy)/(dx)=2xy+4x-3y-6 is log(y+2)=

solve (dy) / (dx) + (y) / (x) * log y = (y) / (x ^ (2)) (log y) ^ (2)

solve x((dy)/(dx))=y(log y-log x+1)

y log y (dx)/(dy) + x - log y =0

If y =log x^(x) ,then (dy)/(dx) =

If y=(log x)^(x) then (dy)/(dx) =