Home
Class 12
MATHS
ysqrt(1-x^(2)) dy + x sqrt(1-y^(2)) dx=0...

`ysqrt(1-x^(2)) dy + x sqrt(1-y^(2)) dx=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \( y \sqrt{1 - x^2} \, dy + x \sqrt{1 - y^2} \, dx = 0 \), we can follow these steps: ### Step 1: Rearranging the Equation We start by rearranging the equation: \[ y \sqrt{1 - x^2} \, dy = -x \sqrt{1 - y^2} \, dx \] ### Step 2: Separating Variables Next, we separate the variables: \[ \frac{y \, dy}{\sqrt{1 - y^2}} = -\frac{x \, dx}{\sqrt{1 - x^2}} \] ### Step 3: Integrating Both Sides Now, we integrate both sides: \[ \int \frac{y \, dy}{\sqrt{1 - y^2}} = -\int \frac{x \, dx}{\sqrt{1 - x^2}} \] ### Step 4: Using Substitution for Integration For the left side, we can use the substitution \( u = 1 - y^2 \), which gives \( du = -2y \, dy \) or \( y \, dy = -\frac{1}{2} du \): \[ \int \frac{y \, dy}{\sqrt{1 - y^2}} = -\frac{1}{2} \int \frac{du}{\sqrt{u}} = -\frac{1}{2} \cdot 2 \sqrt{u} = -\sqrt{1 - y^2} \] For the right side, we use the substitution \( v = 1 - x^2 \), which gives \( dv = -2x \, dx \) or \( x \, dx = -\frac{1}{2} dv \): \[ -\int \frac{x \, dx}{\sqrt{1 - x^2}} = -\left(-\frac{1}{2} \int \frac{dv}{\sqrt{v}}\right) = \frac{1}{2} \cdot 2 \sqrt{v} = \sqrt{1 - x^2} \] ### Step 5: Equating the Results Now we equate the results of the integrations: \[ -\sqrt{1 - y^2} = \sqrt{1 - x^2} + C \] where \( C \) is the constant of integration. ### Step 6: Rearranging to Get the Final Solution Rearranging gives us: \[ \sqrt{1 - y^2} + \sqrt{1 - x^2} = -C \] Let \( A = -C \) (a new constant), we can write: \[ \sqrt{1 - x^2} + \sqrt{1 - y^2} = A \] ### Final Solution Thus, the solution to the differential equation is: \[ \sqrt{1 - x^2} + \sqrt{1 - y^2} = A \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice (4)|11 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice (5)|6 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice (2)|18 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos

Similar Questions

Explore conceptually related problems

Which of the following equation is linear? sqrt(1-x^(2))dx+sqrt(1-y^(2))dy=0

If ysqrt(1-x^(2)) +xsqrt( 1-y^(2)) =1,then (dy)/(dx)=

General solution of x sqrt(1-y^(2))dx-ysqrt(1-x^(2))dy=0 is

ysqrt(1-x^(2))+xsqrt(1-y^(2))=1,"show that "(dy)/(dx)=-sqrt((1-y^(2))/(1-x^(2)))

The solution of x sqrt(1+y^(2))dx+y sqrt(1+x^(2))dy=0

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If (x+sqrt(1+x^(2))) (y+sqrt(1+y^(2))) =1 then (dy)/(dx) may be equals to

If y = log ((sqrt(1 + x^(2)) + x)/(sqrt(1 + x^(2)) -x)) " then " (dy)/(dx) = ?