Home
Class 12
MATHS
(x-y)(1-(dy)/(dx))=e^(x)...

` (x-y)(1-(dy)/(dx))=e^(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \((x - y)(1 - \frac{dy}{dx}) = e^x\), we can follow these steps: ### Step 1: Substitute \(u = x - y\) Let \(u = x - y\). Then, we can express \(y\) in terms of \(u\): \[ y = x - u \] ### Step 2: Differentiate \(u\) Now, differentiate \(u\) with respect to \(x\): \[ \frac{du}{dx} = \frac{d}{dx}(x - y) = 1 - \frac{dy}{dx} \] ### Step 3: Rewrite the differential equation Substituting \(u\) and \(\frac{du}{dx}\) into the original equation gives: \[ u(1 - \frac{dy}{dx}) = e^x \] This can be rewritten using our expression for \(\frac{dy}{dx}\): \[ u \cdot \frac{du}{dx} = e^x \] ### Step 4: Separate variables Now, we can separate the variables: \[ u \, du = e^x \, dx \] ### Step 5: Integrate both sides Integrate both sides: \[ \int u \, du = \int e^x \, dx \] This results in: \[ \frac{u^2}{2} = e^x + C \] ### Step 6: Substitute back for \(u\) Now, substitute back \(u = x - y\): \[ \frac{(x - y)^2}{2} = e^x + C \] ### Step 7: Multiply through by 2 Multiply the entire equation by 2 to simplify: \[ (x - y)^2 = 2e^x + 2C \] ### Final Solution Thus, the solution to the differential equation is: \[ (x - y)^2 = 2e^x + C' \] where \(C' = 2C\) is a constant.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice (5)|6 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice (6)|9 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice (3)|6 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos

Similar Questions

Explore conceptually related problems

(x-y)(1-(dy)/(dx))=e^(y), where x-y=u A) ue^u-e^u=e^(x)+c B) u^(2)=e^(x)+c C) u^(2)=(1)/(2)e^(x)+c D) u^(2)e^(x)=2x+c

The solution of (1+x)(dy)/(dx)+1=e^(x-y) is

(dy)/(dx)=(x+e^(x))/(y)

(dy)/(dx)=(x+e^(2x))/(y)

(1+e^(x))/(y)(dy)/(dx)=e^(x), when y=1, x=0

(dy) / (dx) = e ^ (x + y)

(dy)/(dx)=(x^2+e^(x))/(y)

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0

If e^(x)+e^(y)=e^(x+y) , prove that : (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) .

Solve e^(-x+y)(dy)/(dx)=1