Home
Class 12
MATHS
(x+2y +1) dx - (2x + 4y +3)dy = 0, x+2y ...

`(x+2y +1) dx - (2x + 4y +3)dy = 0, x+2y = u`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \((x + 2y + 1)dx - (2x + 4y + 3)dy = 0\) with the substitution \(x + 2y = u\), we can follow these steps: ### Step 1: Rewrite the differential equation We start with the given equation: \[ (x + 2y + 1)dx - (2x + 4y + 3)dy = 0 \] Rearranging gives us: \[ (x + 2y + 1)dx = (2x + 4y + 3)dy \] Now, we can express \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{x + 2y + 1}{2x + 4y + 3} \] ### Step 2: Substitute \(u = x + 2y\) Using the substitution \(u = x + 2y\), we can express \(y\) in terms of \(u\) and \(x\): \[ y = \frac{u - x}{2} \] Now, we need to find \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{1}{2} \frac{du}{dx} - \frac{1}{2} \] ### Step 3: Substitute \(\frac{dy}{dx}\) into the equation Substituting \(\frac{dy}{dx}\) back into the equation gives: \[ \frac{1}{2} \frac{du}{dx} - \frac{1}{2} = \frac{u + 1}{2u + 3} \] Multiplying through by 2 to eliminate the fraction: \[ \frac{du}{dx} - 1 = \frac{2u + 2}{2u + 3} \] Rearranging gives: \[ \frac{du}{dx} = \frac{2u + 2}{2u + 3} + 1 \] ### Step 4: Simplify the right-hand side To combine the fractions on the right-hand side, we find a common denominator: \[ \frac{du}{dx} = \frac{2u + 2 + (2u + 3)}{2u + 3} = \frac{4u + 5}{2u + 3} \] ### Step 5: Separate variables Now we separate the variables: \[ \frac{2u + 3}{4u + 5} du = dx \] ### Step 6: Integrate both sides Integrating both sides: \[ \int \frac{2u + 3}{4u + 5} du = \int dx \] To integrate the left side, we can use substitution or partial fractions. Here, we can split the integral: \[ \int \left( \frac{1}{2} + \frac{1}{4u + 5} \right) du = x + C \] This gives: \[ \frac{1}{2}u + \frac{1}{4} \ln |4u + 5| = x + C \] ### Step 7: Substitute back for \(u\) Substituting back \(u = x + 2y\): \[ \frac{1}{2}(x + 2y) + \frac{1}{4} \ln |4(x + 2y) + 5| = x + C \] ### Step 8: Simplify the equation Rearranging gives us the final solution in terms of \(y\): \[ y + \frac{1}{8} \ln |4x + 8y + 5| = \frac{x}{2} + C \] ### Final Answer Thus, the solution to the differential equation is: \[ y + \frac{1}{8} \ln |4x + 8y + 5| = \frac{x}{2} + C \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice (5)|6 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice (6)|9 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice (3)|6 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos

Similar Questions

Explore conceptually related problems

(2x -2y +3) dx - (x -y +1) dy = 0 , x -y =u

solution of ( x+ y-1) dx + (2x+ 2y -3) dy=0 is :

If x^(3) dy + xy dx = x^(2) dy + 2y dx , y (2) = e and x gt 1 , then y(4) is equal to .

(2x -2y+3) dx -(x-y+1) dy=0 , " when" x=0, y=1

Solve: (xy ^ (3) + y) dx + 2 (x ^ (2) y ^ (2) + x + y ^ (4)) dy = 0

Solve: (2x ^ (2) y ^ (2) + y) dx + (3x-x ^ (3) y) dy = 0

y-x (dy)/dx = 0 , " when " x =2 , y =3

(x + y (dy) / (dx)) / (yx (dy) / (dx)) = (x cos ^ (2) (x ^ (2) + y ^ (2))) / (y ^ ( 3))

Solve : (x+y-1)dx+(2x+2y-3)dy=0