Home
Class 12
MATHS
dy/dx + xy = xy^(2) " when "x=1 , y =4...

` dy/dx + xy = xy^(2) " when "x=1 , y =4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \( \frac{dy}{dx} + xy = xy^2 \) with the initial condition \( x = 1 \) and \( y = 4 \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \frac{dy}{dx} + xy = xy^2 \] We can rearrange it as: \[ \frac{dy}{dx} = xy^2 - xy \] ### Step 2: Factor out \( xy \) Factoring out \( xy \) from the right-hand side gives us: \[ \frac{dy}{dx} = xy(y - 1) \] ### Step 3: Separate variables We can separate the variables \( y \) and \( x \): \[ \frac{dy}{y(y - 1)} = x \, dx \] ### Step 4: Integrate both sides Now we integrate both sides. The left side requires partial fraction decomposition: \[ \frac{1}{y(y - 1)} = \frac{A}{y} + \frac{B}{y - 1} \] Multiplying through by \( y(y - 1) \) gives: \[ 1 = A(y - 1) + By \] Setting \( y = 1 \) gives \( A = 1 \), and setting \( y = 0 \) gives \( B = -1 \). Thus: \[ \frac{1}{y(y - 1)} = \frac{1}{y} - \frac{1}{y - 1} \] Now we can integrate: \[ \int \left( \frac{1}{y} - \frac{1}{y - 1} \right) dy = \int x \, dx \] This results in: \[ \ln |y| - \ln |y - 1| = \frac{x^2}{2} + C \] ### Step 5: Simplify the left side Using properties of logarithms, we can combine the left side: \[ \ln \left| \frac{y}{y - 1} \right| = \frac{x^2}{2} + C \] ### Step 6: Exponentiate both sides Exponentiating both sides gives: \[ \frac{y}{y - 1} = e^{\frac{x^2}{2} + C} = Ke^{\frac{x^2}{2}} \quad \text{(where \( K = e^C \))} \] ### Step 7: Solve for \( y \) Rearranging gives: \[ y = K e^{\frac{x^2}{2}} (y - 1) \] This simplifies to: \[ y(1 + K e^{\frac{x^2}{2}}) = K e^{\frac{x^2}{2}} \] Thus: \[ y = \frac{K e^{\frac{x^2}{2}}}{1 + K e^{\frac{x^2}{2}}} \] ### Step 8: Use initial conditions to find \( K \) We know \( y(1) = 4 \): \[ 4 = \frac{K e^{\frac{1^2}{2}}}{1 + K e^{\frac{1^2}{2}}} \] This simplifies to: \[ 4(1 + K e^{\frac{1}{2}}) = K e^{\frac{1}{2}} \] Rearranging gives: \[ 4 = K e^{\frac{1}{2}} (1 - 4) \Rightarrow K e^{\frac{1}{2}} = -\frac{4}{3} \] Thus: \[ K = -\frac{4}{3} e^{-\frac{1}{2}} \] ### Step 9: Substitute \( K \) back into the equation Substituting \( K \) back into our equation for \( y \): \[ y = \frac{-\frac{4}{3} e^{-\frac{1}{2}} e^{\frac{x^2}{2}}}{1 - \frac{4}{3} e^{-\frac{1}{2}} e^{\frac{x^2}{2}}} \] ### Final Result This gives us the solution for the differential equation with the given initial condition.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice (8)|7 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice (9)|5 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice (6)|9 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos

Similar Questions

Explore conceptually related problems

(1 + x^(2)) (dy)/(dx) + 2xy = 4x ^(2) , given that y = 0 , when x =0

If x^(3) dy + xy dx = x^(2) dy + 2y dx , y (2) = e and x gt 1 , then y(4) is equal to .

(a) dy/dx = (xy)/(x^2+y^2)

(xy - x^2)dy = y^2 dx

Solve the differential equation (dy)/(dx)=1+x+y^(2)+xy^(2) , when y=0 and x=0.

The solution of (dy)/(dx) = 1+ y + y^(2) + x+ xy + xy^(2) is

If sin (xy) + (x)/(y) =x^(2) - y , " then " (dy)/(dx) is equal to

(dy)/(dx) + 2xy = x , given that y =1 when x =0

Find the particular solution of the differential equation (dy)/(dx)=-4xy^(2) given that y=1, when x=0

xy=(x+y)^(2) then find (dy)/(dx)