Home
Class 12
MATHS
(x+1)(dy)/(dx) -1 = 2e^(-y) , y=0, " whe...

` (x+1)(dy)/(dx) -1 = 2e^(-y) , y=0, " when " x=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \((x+1)\frac{dy}{dx} - 1 = 2e^{-y}\) with the initial condition \(y(1) = 0\), we will follow these steps: ### Step 1: Rearrange the Equation We start by rearranging the given equation to isolate \(\frac{dy}{dx}\): \[ (x+1)\frac{dy}{dx} = 2e^{-y} + 1 \] \[ \frac{dy}{dx} = \frac{2e^{-y} + 1}{x+1} \] ### Step 2: Separate Variables Next, we separate the variables \(y\) and \(x\): \[ dy = \left(\frac{2e^{-y} + 1}{x+1}\right) dx \] To facilitate integration, we can multiply both sides by \(e^y\): \[ e^y dy = \frac{(2 + e^y)}{x+1} dx \] ### Step 3: Integrate Both Sides Now we will integrate both sides. The left side becomes: \[ \int e^y dy = e^y + C_1 \] For the right side, we can rewrite it as: \[ \int \frac{(2 + e^y)}{x+1} dx = \int \frac{2}{x+1} dx + \int \frac{e^y}{x+1} dx \] The first integral is: \[ 2 \ln|x+1| + C_2 \] Thus, we have: \[ e^y = 2 \ln|x+1| + C \] ### Step 4: Apply Initial Condition Now we will apply the initial condition \(y(1) = 0\): \[ e^0 = 2 \ln|1+1| + C \] This simplifies to: \[ 1 = 2 \ln(2) + C \] Solving for \(C\): \[ C = 1 - 2 \ln(2) \] ### Step 5: Final Solution Substituting \(C\) back into our equation gives: \[ e^y = 2 \ln|x+1| + 1 - 2 \ln(2) \] This can be simplified to: \[ e^y = 2 \ln\left(\frac{x+1}{2}\right) + 1 \] ### Step 6: Solve for \(y\) Taking the natural logarithm of both sides: \[ y = \ln\left(2 \ln\left(\frac{x+1}{2}\right) + 1\right) \] ### Final Answer Thus, the solution to the differential equation with the given initial condition is: \[ y = \ln\left(2 \ln\left(\frac{x+1}{2}\right) + 1\right) \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice (9)|5 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise M.C.Q|12 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice (7)|6 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos

Similar Questions

Explore conceptually related problems

The Particular solution of the differential equation (x+1)(dy)/(dx)-2e^(-y)=1 when x=1 , y=0

(dy)/(dx) -y =e^(x ) " when" x=0 and y=1

(x-y)(1-(dy)/(dx))=e^(x)

Solve (dy)/(dx)-y=e^(x) ,y(0)=1

(2x -2y+3) dx -(x-y+1) dy=0 , " when" x=0, y=1

(dy)/(dx)=2e^(x)y^(3) , when x=0, y=(1)/(2)

The solution of the differential equation x(dy)/(dx) = 2y + x^(3)e^(x), where y = 0 when x = 1 is

(dy)/(dx)=(x+y+1)/(x+y-1) given y=1 when x=1

(1+e^(x))/(y)(dy)/(dx)=e^(x), when y=1, x=0

3e^(x) tan y dx + (1+e^(x)) sec^(2) dy =0 , " when" x = 0 and y = pi