Home
Class 12
MATHS
xy (dy)/(dx) = x^(2) + 2y^(2) , y(1) = 0...

` xy (dy)/(dx) = x^(2) + 2y^(2) , y(1) = 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \( xy \frac{dy}{dx} = x^2 + 2y^2 \) with the initial condition \( y(1) = 0 \), we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ xy \frac{dy}{dx} = x^2 + 2y^2 \] We can rearrange this to isolate \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{x^2 + 2y^2}{xy} \] ### Step 2: Separate variables Next, we can separate the variables \(y\) and \(x\): \[ \frac{dy}{dx} = \frac{x}{y} + \frac{2y}{x} \] This can be rewritten as: \[ \frac{dy}{dx} - \frac{2y}{x} = \frac{x}{y} \] ### Step 3: Identify the type of differential equation This is a first-order linear differential equation in the standard form: \[ \frac{dy}{dx} + P(x)y = Q(x) \] where \(P(x) = -\frac{2}{x}\) and \(Q(x) = \frac{x}{y}\). ### Step 4: Find an integrating factor To solve this, we need to find an integrating factor \( \mu(x) \): \[ \mu(x) = e^{\int P(x) \, dx} = e^{\int -\frac{2}{x} \, dx} = e^{-2 \ln |x|} = \frac{1}{x^2} \] ### Step 5: Multiply through by the integrating factor Now we multiply the entire differential equation by the integrating factor: \[ \frac{1}{x^2} \frac{dy}{dx} - \frac{2y}{x^3} = \frac{1}{x} \] ### Step 6: Rewrite the left side The left side can be rewritten as: \[ \frac{d}{dx}\left(\frac{y}{x^2}\right) = \frac{1}{x} \] ### Step 7: Integrate both sides Now we integrate both sides: \[ \int \frac{d}{dx}\left(\frac{y}{x^2}\right) dx = \int \frac{1}{x} dx \] This gives us: \[ \frac{y}{x^2} = \ln |x| + C \] ### Step 8: Solve for \(y\) Now we solve for \(y\): \[ y = x^2(\ln |x| + C) \] ### Step 9: Apply the initial condition We apply the initial condition \(y(1) = 0\): \[ 0 = 1^2(\ln |1| + C) \implies 0 = 0 + C \implies C = 0 \] Thus, the solution simplifies to: \[ y = x^2 \ln |x| \] ### Final Solution The final solution to the differential equation is: \[ y = x^2 \ln |x| \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice (9)|5 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise M.C.Q|12 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice (7)|6 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos

Similar Questions

Explore conceptually related problems

(dy)/(dx)=(x^(2)-y^(2))/(xy)

If (dy)/dx = (xy)/(x^2 + y^2), y(1) = 1 and y(x) = e then x =

(dy)/(dx)=(x^2y+y)/(xy^2+x)

(dy)/(dx) = (2xy)/(x^(2)-1-2y)

If x^(3) dy + xy dx = x^(2) dy + 2y dx , y (2) = e and x gt 1 , then y(4) is equal to .

Find (dy)/(dx) of x^(2)+xy+cos^(2)y=1

Solve the differential equation (dy)/(dx)=1+x+y^(2)+xy^(2) , when y=0 and x=0.

(dy)/(dx)=xy+2y+x+2