Home
Class 12
MATHS
Find k ,such that the function P(x...

Find k ,such that the function
`P(x)={{:(k({:(4),(x):}),,x=0","1","2","3","4,kgt0),(0,"otherwise."):}`
is a probability mass function (p.m.f.)

Text Solution

Verified by Experts

`P(x) ={{:(k((4)/(x)), x = 0","1","2","3","4, k gt 0),(0,"otherwise"):}`
`therefore P[X = 0] = k{:((4),(5)):} =k xx ""^(4)C_(0) = k(1) = k`
`P[X = 1] = k{:((4),(1)):} = k xx ""^(4)C_(1) = k (4) = 4k`
`P[x = 2] = k((4),(2)) = k xx ""^(4)C_(2) = k((4xx3)/(1xx2)) = 6k `
`P [x = 3] = k((4),(3)) = k xx ""^(4)C_(3) = k(4) = 4k`
`P[X =4] = k((4),(4)) = k xx ""^(4)C_(4) = k (1) = k`
Since `P[x = x] ` is p.m.f., `sum_(x=0)^(4) P[X = x] = 1`
` therefore P[X = 0 ] + P [X = 1] +P[X = 2] +P[X = 3] + P[x = 4] = 1`
`therefore k + 4k + 6k + k = 1`
`therefore 16k = 1 " "therefore k = (1)/(16)`
Promotional Banner

Topper's Solved these Questions

  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise EXAMPLE FOR PRACTICE|20 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • PLANE

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise BINOMIAL DISTRIBUTION|20 Videos

Similar Questions

Explore conceptually related problems

The p.m.f. of a r.v. X is P(x)={{:(kx^(2)","x=1","2","3","4),(0", otherwise"):} , then E (X) =

The p.m.f. of a r.v. X is P(x){{:(kx^(2)","x=1","2","3","4),(0", otherwise"):} , then Var (X) =

Detemine k such that the following funciton is a p.d.f P(X=x)=k ((2^x)/(x!)), x=0,1,2,3 =0 otherwise .

If the function P (X=x) =kx,……x=1,2,3,4,5=0 ….otherwise is a probability mass function (p.m.f.) ,then : k=….

The p.m.f. of a r.v. X is P(x)={{:((c)/(x^(3))","x=1","2","3),(0", otherwise"):},"then" E (X) =

The p.m.f. of a r.v. X is P(x)={{:((3-x)/(10)","x=-1","0","1","2),(0", otherwise"):} then E (X) =

The p.m.f. of a r.v X is P(x)={{:(kx","x=1","2","3),(0", otherwise"):} , then Var (X) =

The p.m.f. of a r.v. X is P(x)={{:(2kx","x=1","2","3),(0", otherwise"):} , then E (X) =

The p.m.f. of a r.v. X is P(x)={{:(kx","x=1","2","3),(0", otherwise"):} , then E (X) =

The p.m.f. of a r.v. X is P(x)={{:(2kx","x=1","2","3),(0", otherwise"):} , then k =