Home
Class 12
MATHS
For the following p.d.f of X, find P(...

For the following p.d.f of X, find `P(X lt 1) and P(|X|le 1)` : `f(x) = {{:((x+2)/(18),-2lt xlt 4),(0,"otherwise"):}`

Text Solution

AI Generated Solution

To solve the problem, we need to find the probabilities \( P(X < 1) \) and \( P(|X| \leq 1) \) using the given probability density function (p.d.f.): \[ f(x) = \begin{cases} \frac{x + 2}{18} & \text{for } -2 < x < 4 \\ 0 & \text{otherwise} \end{cases} \] ...
Promotional Banner

Topper's Solved these Questions

  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise EXAMPLE FOR PRACTICE|20 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • PLANE

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise BINOMIAL DISTRIBUTION|20 Videos

Similar Questions

Explore conceptually related problems

The p.d.f. of X is f(x)={{:((x+2)/(18)","-2ltxlt4),(0", otherwise"):} , then P(|X|lt1) =

For the following probability density function (p.d.f) of X find : (i) P (X lt 1) , (ii) p (|X| lt 1) if f(x) = (x^(2))/(18') - 3 lt x lt 3 , f(x) = 0 , otherwise

The p.d.f. of X is f(x)={{:((x+2)/(18)","-2ltxlt4),(0", otheriwse"):} , then P(Xlt1) =

The p.d.f. of X is f(x)={{:((x^(2))/(18)","-3ltxlt3),(0", otherwise"):} , then P(X lt 1) =

The p.d.f. of X is f(x)={{:((x^(2))/(18)","-3ltxlt3),(0", otherwise"):} , then P(|X|lt1) =

Find k, if the following is p.d.f or r.v.f X. f(x) = {{:(kx^(2)(1-x), 0 lt x lt 1),(0, "otherwise"):}

The p.d.f. of a continuous r.v. X is f(x)={{:((x^(2))/(3)","-1lt x lt 2),(0", otherwise"):} , then P(X gt0) =

The p.d.f. of a continuous r.v. X is f(x)={{:((x^(2))/(3)","-1lt x lt 2),(0", otherwise"):} , then P(1 lt X lt2) =

The p.d.f. of a continuous r.v. X is f(x)={{:((x^(2))/(3)","-1lt x lt 2),(0", otherwise"):} , then P(X le -2) =

The following is the p.d.f of continuous random variable X. f(x) = (x)/(8), 0 lt x lt 4 =0 , otherwise. Find the expression for c.d.f of X