Home
Class 12
MATHS
If the function f(x) =(x^(2))/(3), - 1lt...

If the function `f(x) =(x^(2))/(3), - 1lt x lt 2`
= 0 , otherwise is a p.d.f of X, then `P(X lt 0)` is

A

`(1)/(9)`

B

`(2)/(9)`

C

`(3)/(9)`

D

`(4)/(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the probability \( P(X < 0) \) given the probability density function (p.d.f.) \( f(x) = \frac{x^2}{3} \) for the interval \( -1 < x < 2 \) and \( f(x) = 0 \) otherwise. ### Step 1: Understand the p.d.f. The function \( f(x) \) is defined as: \[ f(x) = \begin{cases} \frac{x^2}{3} & \text{for } -1 < x < 2 \\ 0 & \text{otherwise} \end{cases} \] ### Step 2: Set up the probability expression To find \( P(X < 0) \), we need to evaluate the integral of \( f(x) \) from \( -1 \) to \( 0 \): \[ P(X < 0) = \int_{-\infty}^{0} f(x) \, dx \] Since \( f(x) = 0 \) for \( x < -1 \), we can simplify this to: \[ P(X < 0) = \int_{-1}^{0} f(x) \, dx \] ### Step 3: Substitute the p.d.f. into the integral Now we substitute \( f(x) \) into the integral: \[ P(X < 0) = \int_{-1}^{0} \frac{x^2}{3} \, dx \] ### Step 4: Factor out the constant We can factor out the constant \( \frac{1}{3} \): \[ P(X < 0) = \frac{1}{3} \int_{-1}^{0} x^2 \, dx \] ### Step 5: Calculate the integral Now we calculate the integral \( \int_{-1}^{0} x^2 \, dx \): \[ \int x^2 \, dx = \frac{x^3}{3} \] Evaluating this from \( -1 \) to \( 0 \): \[ \left[ \frac{x^3}{3} \right]_{-1}^{0} = \frac{0^3}{3} - \frac{(-1)^3}{3} = 0 - \left(-\frac{1}{3}\right) = \frac{1}{3} \] ### Step 6: Substitute back into the probability expression Now substituting back into the expression for \( P(X < 0) \): \[ P(X < 0) = \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{9} \] ### Final Answer Thus, the probability \( P(X < 0) \) is: \[ \boxed{\frac{1}{9}} \]
Promotional Banner

Topper's Solved these Questions

  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise EXAMPLE FOR PRACTICE|20 Videos
  • PLANE

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise BINOMIAL DISTRIBUTION|20 Videos

Similar Questions

Explore conceptually related problems

The function f(x)=xsqrt(ax-x^2), a lt 0

Given the p.d.f of a continous r.v.X was f(x) = (x^(2))/(3), - 1 lt x lt2 =0, Otherwise Determine the c.d.f of X and hence find . P(X lt 1), P(X le - 2), P(X gt0),P(1le X le 2)

The p.d.f of a continuous random variable X is f(x) = (x^(2))/(3), - 1 lt x lt 2 0 = otherwise Then the c.d.f of X is

If a c.r.v. X has the probability density function f(x) = C(9-x^(2)), 0 lt x lt 3 = 0 , otherwise Then, the value of C is

Find k, if the function f defined by f(x) = kx, 0 lt x lt 2 =0 , otherwise is the p.d.f of a random variable X.

The function f(x) = min {|x|, sqrt(1-x^(2))}, -1lt x lt 1 possesses

The p.d.f. of a continuous r.v. X is f(x)={{:((x^(2))/(3)","-1lt x lt 2),(0", otherwise"):} , then P(X gt0) =

The p.d.f. of a continuous r.v. X is f(x)={{:((x^(2))/(3)","-1lt x lt 2),(0", otherwise"):} , then P(1 lt X lt2) =

The p.d.f. of a continuous r.v. X is f(x)={{:((x^(2))/(3)","-1lt x lt 2),(0", otherwise"):} , then P(X le -2) =

If f(x) = k x (1 -x) , for 0 lt x lt 1 = 0 , otherwise , is the p.d.f. of a r. v. X then k = 12 . True or False.