Home
Class 12
MATHS
If bar a, bar b " and " barc are unit ...

If `bar a, bar b " and " barc` are unit coplanar vetors then
`[2 bar a -bar b " "2 bar b -barc " " 2 barc-bara]=....`

A

`sqrt(3)`

B

1

C

`-sqrt(3)`

D

0

Text Solution

AI Generated Solution

To solve the problem, we need to find the value of the expression given as: \[ [2\bar{a} - \bar{b}, \; 2\bar{b} - \bar{c}, \; 2\bar{c} - \bar{a}] \] where \(\bar{a}\), \(\bar{b}\), and \(\bar{c}\) are unit coplanar vectors. ...
Promotional Banner

Topper's Solved these Questions

  • MODEL QUESTION PAPER FOR PRACTICE

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise SECTION-B (Attempt any Eight of the following )|12 Videos
  • MODEL QUESTION PAPER FOR PRACTICE

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise SECTION-C (Attempt any Eight of the following )|11 Videos
  • MATRICES

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|12 Videos
  • PAIR OF STRAIGHT LINES

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos

Similar Questions

Explore conceptually related problems

lf bara,barb,barc are coplanar unit vectors, then [2bara-barb,2barb-barc,2barc-bara]=

If bara,barb,barc are non-coplanar vectors then [bar(a)+2bar(b)" "bar(a)+bar(c)" "bar(b)]=

If bar(a),bar(b) and bar(c) are unit vectors satisfying |bar(a)-bar(b)|^(2)+|bar(b)-bar(c)|^(2)+|bar(c)-bar(a)|^(2)=9 , then |2bar(a)+5bar(b)+5bar(c)| =

If bar(a) , bar(b) , bar(c) are non -zero,non - coplanar vectors and bar(a)+bar(b)+bar(c) , -a+8bar(b)+7bar(c) , 5bar(a)+lambdabar(b)-3bar(c) are coplanar,then the value of |lambda| is

lf bara,barb,barc are three unit-vectors such that 3bara + 4barb + 5barc = bar0 , then

If bar(a),bar(b),bar(c) are non - coplanar vectors, then show the vectors -bar(a)+3bar(b)-5bar(c),-bar(a)+bar(b)+bar(c) and 2bar(a)-3bar(b)+bar(c) are coplanar.

Given four non zero vectors bar a,bar b,bar c and bar d. The vectors bar a,bar b and bar c are coplanar but not collinear pair by pairand vector bar d is not coplanar with vectors bar a,bar b and bar c and hat (bar a bar b) = hat (bar b bar c) = pi/3,(bar d bar b)=beta ,If (bar d bar c)=cos^-1(mcos beta+ncos alpha) then m-n is :

If bar(a),bar(b),bar(c) are non-zero, non -coplanar vectors, then show that the vectors 2bar(a)-5bar(b)+2bar(c),bar(a)+5bar(b)-6bar(c)and3bar(a)-4bar(c) are coplanar.

If [(bar(a)+2bar(b)+3bar(c))times(bar(b)+2bar(c)+3bar(a))].(bar(c)+2bar(a)+3bar(b))=54 , where bar(a),bar(b)&bar(c) are 3 non coplanar vectors then |[bar(a).bar(a)quad bar(a).bar(b)quad bar(a).bar(c)],[bar(b).bar(a)quad bar(b).bar(b)quad bar(b).bar(c)],[bar(c).bar(a)quad bar(c).bar(b)quad bar(c).bar(c)]|

bar(a),bar(b) and bar(c) are unit vectors satisfying |bar(a)-bar(b)|^(2)+|bar(b)-bar(c)|^(2)+|bar(c)-bar(a)|^(2)=9 then |2bar(a)+5bar(b)+5bar(c)|=