Home
Class 12
MATHS
A line passes through (3, -1, 2) and per...

A line passes through (3, -1, 2) and perpendicualr to thelines `bar r = (hat i +hat j - hat k)+ lambda(2 hat i -2 hat j +hat k )" and " bar r= (2 hat i + hat j -3 hatk )+ mu( hat i-2 hat j +2 hat k),` find its equation .

Text Solution

Verified by Experts

`bar r =(3 bar i-barj+2 bark )+lambda(2 hati+3 hat j+2hatk)`
Promotional Banner

Topper's Solved these Questions

  • MODEL QUESTION PAPER FOR PRACTICE

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise SECTION-D (Atempt any five of the following)|8 Videos
  • MODEL QUESTION PAPER FOR PRACTICE

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise SECTION-B (Attempt any Eight of the following )|12 Videos
  • MATRICES

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|12 Videos
  • PAIR OF STRAIGHT LINES

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos

Similar Questions

Explore conceptually related problems

A line passes through (2, -1, 3) and is perpendicular to the line -> r=( hat i+ hat j- hat k)+lambda(2 hat i-2 hat j+ hat k)a n d\ -> r=(2 hat i- hat j-3 hat k)+mu( hat i+2 hat j+2 hat k)dot obtaining its equation.

Find the equation in vector and cartesian form of the line passing through the point : (2,-1, 3) and perpendicular to the lines : vec(r) = (hat(i) + hat(j) - hat(k)) + lambda (2 hat(i) - 2 hat(j) + hat(k)) and vec(r) = (2 hat(i) - hat(j) - 3 hat(k) ) + mu (hat(i) + 2 hat(j) + 2 hat(k)) .

(A ) Find the vector and cartesian equations of the line through the point (5,2,-4) and which is parallel to the vector 3 hat(i) + 2 hat(j) - 8 hat(k) . (b) Find the equation of a line passing through the point P(2, -1, 3) and perpendicular to the lines : vec(r) = (hat(i) + hat(j) - hat(k) ) + lambda (2 hat(i) - 2 hat(j) + hat(k)) and vec(r) = (2 hat(i) - hat(j) - 3 hat(k) ) + mu (hat(i) + 2 hat(j) + 2 hat(k)) .

A line passes through (1, -1, 3) and is perpendicular to the lines r*(hat(i)+hat(j)-hat(k))+lambda(2hat(i)-2hat(j)+hat(k)) and r=(2hat(i)-hat(j)-3hat(k))+mu(hat(i)+2hat(j)+2hat(k)) obtain its equation.

Find the equations of a line passing through the point P(2,-1,3) and perpendicular to the lines vec(r ) =(hat(i) + hat(j) -hat(k)) +lambda (2hat(i) -2hat(j) +hat(k)) and vec( r) =(2hat(i) -hat(j) -3hat(k)) +mu (hat(i) +2hat(j) +2hat(k))

The equation of line passing through (3,-1,2) and perpendicular to the lines vec(r)=(hat(i)+hat(j)-hat(k))+lamda(2hat(i)-2hat(j)+hat(k)) and vec(r)=(2hat(i)+hat(j)-3hat(k))+mu(hat(i)-2hat(j)+2hat(k)) is

Find the shortest distance between the lines vec r=(hat i+2hat j+hat k)+lambda(hat i-hat j+hat k) and vec r=(2hat i-hat j-hat k)+mu(2hat i+hat j+2hat k)

If vec r=(hat i+2hat j+3hat k)+lambda(hat i-hat j+hat k) and vec r=(hat i+2hat j+3hat k)+mu(hat i+hat j-hat k) are bisector of two lines is

The shortest distance between the line L_1=(hat i - hat j hat k) lambda (2 hat i - 14 hat j 5 hat k) and L_2=(hat j hat k) mu (-2 hat i - 4 hat 7 hat) then L_1 and L_2 is

Find the angle between the plane hat r .( hat i - 2 hat j + 3 hat k )=5 and the line hat r = ( hat i + hat j -hat k ) + lambda ( hat i- hat j + hat k )