Home
Class 12
MATHS
Prove that : int(-a)^(a)f(x)dx =2 int(...

Prove that :
`int_(-a)^(a)f(x)dx =2 int_(a)^(0) f(x)dx, if f(x) ` is even funtion
=0 , if f(x) is off fuction.

Promotional Banner

Topper's Solved these Questions

  • MODEL QUESTION PAPER FOR PRACTICE

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise SECTION-C (Attempt any Eight of the following )|11 Videos
  • MATRICES

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|12 Videos
  • PAIR OF STRAIGHT LINES

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(a)f(x)dx=

int_(0)^(a)f(x)dx

Prove that: int_(0)^(2a)f(x)dx=int_(0)^(2a)f(2a-x)dx

int_(-a)^(a)f(x)dx= 2int_(0)^(a)f(x)dx, if f is an even function 0, if f is an odd function.

Prove that int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx

Prove that int_(0)^(2a)f(x)dx=int_(a)^(a)[f(a-x)+f(a+x)]dx

int_(0)^(2a)f(x)dx-int_(0)^(a)f(x)dx=

int_(0)^(2a)f(x)dx-int_(0)^(a)f(x)dx=

If : int_(0)^(2a)f(x)dx=2.int_(0)^(a)f(x)dx , then :

Prove that int_(a)^(b)f(x)dx=(b-a)int_(0)^(1)f((b-a)x+a)dx