Home
Class 10
MATHS
If sumf(i)x(i)=3880 and mean (bar(X))=38...

If `sumf_(i)x_(i)=3880` and mean `(bar(X))=38.8,` find `sumf_(i)`

Text Solution

Verified by Experts

The correct Answer is:
`sumf_(i)=100`
Promotional Banner

Topper's Solved these Questions

  • STATISTICS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Assignment 6.3|4 Videos
  • STATISTICS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Assignment 6.4|9 Videos
  • STATISTICS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Assignment 6.1|4 Videos
  • SIMILARITY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise SUBJECTIVE TYPE|20 Videos
  • THEOREMS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise CIRCLE|15 Videos

Similar Questions

Explore conceptually related problems

For the frequency distribution of time ( in minutes ) a worker takes to complete the work, sumf_(i)=100,sumf_(i)d_(i)=185 and mean (bar(X))=38.85 Find the assumed mean (A).

If sumf_(i)=100 and(bar(u))=-0.28,"find "sumf_(i)u_(i) .

Find the mean (bar(X)) if sumf_(i)x_(i)=75andsumf_(i)=15 .

Find sumf_(i)d_(i) in the following cases : (i) bar(d)=1.08,sumf_(i)=100 (ii) bar(d)=1.2,sumf_(i)=15

If sumf_(i)=20 , sumf_(i)x_(i)=120+y and barX=7 , then y=?

If sum_(i=1)^(2n)cos^(-1)x_(i)=0 then find the value of sum_(i=1)^(2n)x_(i)

For a certain frequency distribution, the value of Assumed mean (A)=1300 , sumf_(i)d_(i)=900 and sumf_(i)=100 . Find the value of mean (barX) .

If sumf_(i)u_(i)=36 , sumf_(i)=100 , A=40 and h=3 , then barX=?

If for distribution of 18 observations sum(x_(i)-5)=3 and sum(x_(i)-5)^(2)=43, find the mean and standard deviation.

If sum_(i=1)^(2n)sin^(-1)x_(i)=n pi then find the value of sum_(i=1)^(2n)x_(i)