Home
Class 11
MATHS
A parabola is drawn with focus at one of...

A parabola is drawn with focus at one of the foci of the ellipse `(x^2)/(a^2)+(y^2)/(b^2)=1` . If the latus rectum of the ellipse and that of the parabola are same, then the eccentricity of the ellipse is `1-1/(sqrt(2))` (b) `2sqrt(2)-2` `sqrt(2)-1` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

A parabola is drawn with focus at one of the foci of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 . If the latus rectum of the ellipse and that of the parabola are same, then the eccentricity of the ellipse is (a) 1-1/(sqrt(2)) (b) 2sqrt(2)-2 (c) sqrt(2)-1 (d) none of these

A parabola is drawn with focus at one of the foci of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 . If the latus rectum of the ellipse and that of the parabola are same, then the eccentricity of the ellipse is (a) 1-1/(sqrt(2)) (b) 2sqrt(2)-2 (c) sqrt(2)-1 (d) none of these

If the eccentricity of the ellipse, x^2/(a^2+1)+y^2/(a^2+2)=1 is 1/sqrt6 then latus rectum of ellipse is

If the eccentricity of the ellipse, x^2/(a^2+1)+y^2/(a^2+2)=1 is 1/sqrt6 then latus rectum of ellipse is

Pa n dQ are the foci of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 and B is an end of the minor axis. If P B Q is an equilateral triangle, then the eccentricity of the ellipse is 1/(sqrt(2)) (b) 1/3 (d) 1/2 (d) (sqrt(3))/2

Pa n dQ are the foci of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 and B is an end of the minor axis. If P B Q is an equilateral triangle, then the eccentricity of the ellipse is 1/(sqrt(2)) (b) 1/3 (d) 1/2 (d) (sqrt(3))/2

Pa n dQ are the foci of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 and B is an end of the minor axis. If P B Q is an equilateral triangle, then the eccentricity of the ellipse is 1/(sqrt(2)) (b) 1/3 (d) 1/2 (d) (sqrt(3))/2

Pa n dQ are the foci of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 and B is an end of the minor axis. If P B Q is an equilateral triangle, then the eccentricity of the ellipse is 1/(sqrt(2)) (b) 1/3 (d) 1/2 (d) (sqrt(3))/2

Suppose the eccentricity of the ellipse x^2/(a^2+3)+ y^2/(a^2+4)=1 is 1//sqrt8 . Let l be the latus rectum of the ellipse, then l equals