Home
Class 12
MATHS
If lim(x rarr -2) (f(x))/x^2=1, find (i)...

If `lim_(x rarr -2) (f(x))/x^2=1`, find (i) `lim_(x rarr -2)f(x)` and (ii) `lim_(x rarr -2) f(x)/x`

Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(x rarr-2)(f(x))/(x^(2))=1, find (i)lim_(x rarr-2)f(x);(ii)lim_(x rarr-2)(f(x))/(x)

lim_(x rarr2)(f(x)-f(2))/(x-2)=

If lim_(x rarr4)(f(x)-5)/(x-2)=1 then lim_(x rarr4)f(x)=

Find lim_(x rarr2)f(x) when lim_(x rarr2)(f(x)-5)/(x-2)=3

lim_(x rarr oo) (1+f(x))^(1/f(x))

If lim_(x rarr a^(+)) f(x) = l = lim_(x rarr a^(-)) g(x) and lim_(x rarr a^(-)) f(x) = m = lim_(x rarr a^(+)) g(x) , then the function f(x) g(x) :

Given lim_(x rarr0)(f(x))/(x^(2))=2 then lim_(x rarr0)[f(x)]=

If lim_(x rarr a)[f(x)g(x)] exists,then both lim_(x rarr a)f(x) and lim_(x rarr a)g(x) exist.

If lim_(x rarr2)f(f(x)+g(x))=2 and lim_(x rarr2)(f(x)-g(x))=1 then lim_(x rarr2)f(x)*g(x) need not exist.

1.if lim_(x rarr a)f(x) and lim_(x rarr a)g(x) both exist,then lim_(x rarr a){f(x)g(x)} exists.2. If lim_(x rarr a){f(x)g(x)} exists,then both lim_(x rarr a)f(x) and lim_(x rarr a)g(x) exist.Which of the above statements is/are correct?