Home
Class 12
MATHS
" Prove that "2sin^(-1)x=sin^(-1)(2x sqr...

" Prove that "2sin^(-1)x=sin^(-1)(2x sqrt(1-x^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that, 2 sin^(-1)x = sin^(-1) (2x sqrt (1-x^2))

Prove that sin^(-1)x=cos^(-1) sqrt(1-x^2)

Prove that : 2 sin^-1 x = sin^-1 (2x sqrt(1-x^2)), |x| le (1/(sqrt2)

Prove that sin^(-1)x+sin^(-1)sqrt(1-x^(2))=(pi)/(2)

Prove that cos^(-1)x=2sin^(-1)(sqrt (1-x)/sqrt2)

prove that cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))

Prove that cos tan^(-1)sin cot^(-1)x=sqrt((x^(2)+1)/(x^(2)+2))

Prove that : sin^(-1) (2x sqrt(1-x^(2)))= 2 sin^(-1) x, - 1/(sqrt(2)) le x le 1/(sqrt(2))

Prove that : sin^(-1) (2x sqrt(1-x^(2)) ) = 2 sin^(-1) x , -1/(sqrt(2))le x le 1/(sqrt(2)

Prove that sin^(-1). ((x + sqrt(1 - x^(2))/(sqrt2)) = sin^(-1) x + (pi)/(4) , where - (1)/(sqrt2) lt x lt(1)/(sqrt2)