Home
Class 12
MATHS
x=t cos t,y=t+sin t," then "(d^(2)x)/(dy...

x=t cos t,y=t+sin t," then "(d^(2)x)/(dy^(2))" at "t=(pi)/(2)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

x=t cos t,y=t+sin t. Then (d^(2)tau)/(dy^(2)) at t=(pi)/(2) is (pi+4)/(2)(b)-(pi+4)/(2)-2(d) none of these

x=a cos t,y=a sin t then (d^(2)(y))/(dx^(2)) at t=(pi)/(3),(pi)/(6),(pi)/(2),(pi)/(4)

x = t cos t , y = t + sint . Then (d^2x)/(dy^2) at t = pi/2

If x= sin t and y= sin^(3)t , then (d^(2)y)/(dx^(2)) at t=pi/2 is

If x= sin t and y= sin^(3)t , then (d^(2)y)/(dx^(2)) at t=pi/2 is

If x=2cos t-cos2t,y=2sin t-sin2t,tind(d^(2)y)/(dx^(2)) at t=(pi)/(2)

If x = 2 cos t - cos 2 t and y =2 sin t - sin 2t, then (dy)/(dx) at t = (pi)/(2) is

If x=2cost+cos2t,y=2 sint-sin2t , then (dy)/(dx) at t=(pi)/(4) is

If x = e ^(t ) sin t, y = e ^(t) cos t, then (d ^(2) y )/(dx ^(2)) at t = pi is