Home
Class 12
MATHS
" If "f'(x)=sqrt(2x^(2)-1)" and "y=f(x^(...

" If "f'(x)=sqrt(2x^(2)-1)" and "y=f(x^(2))," then "(dy)/(dx)" at "x=1" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If f'(x)=sqrt(2x^(2)-1) and y=f(x^(2)), then find (dy)/(dx) at x=1

f'(x)=sqrt(2x^(2)-1) and y=f(x^(2)), then (dy)/(dx) at x=1 is 2(b)1(c)-2 (d) none of these

If f^(prime)(x)=sqrt(2x^2-1) and y=f(x^2) , then find (dy)/(dx) at x=1 .

Let f'(x)=sin(x^(2)) and y=f(x^(2)+1) then (dy)/(dx) at x=1 is

If f^1(x)=sqrt(2x^(2)-1) and y=f(x^2) then dy/dx at x = 1 is

If f'(x)=sqrt(2x^2-1) and y=f(x^2) then what is dy/dx at x = 1 ?

If f^(prime)(x)=sqrt(2x^2-1) and y=f(x^2),t h e n(dy)/(dx) at x=1 is (a)2 (b) 1 (c) -2 (d) none of these

If f^(prime)(x)=sqrt(2x^2-1) and y=f(x^2),t h e n(dy)/(dx) at x=1 is (a)2 (b) 1 (c) -2 (d) none of these

If f(x)=sqrt(3x^(2)+6) and y=f(x^(3)), then at x=1,(dy)/(dx) is equal to