Home
Class 12
MATHS
" If "y=ae^(mx)+be^(-mx)," then "(d^(2)y...

" If "y=ae^(mx)+be^(-mx)," then "(d^(2)y)/(dx^(2))-m^(2)y" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=ae^(mx)+be^(-mx) then (d^(2)y)/(dx^(2)) is

If y=ae^(mx)+be^(-mx), then (d^(2y))/(dx^(2))-m^(2)y is equal to m^(2)(ae^(mx)-be^(-mx))1 none of these

If y=ae^(mx)+be^(-mx)," then "y_(2)=

If y=ae^(mx)+be^(-mx) then (d^2y)/(dx^2) is

If y = ae^(mx) + be^-(mx) , then (d^2y)/(dx^2) =

If y=ae^(mx)+be^(-mx) , then (d^2y)/dx^2-m^2y is equals to (a). m^2(ae^(mx)-be^(mx)) (b).1 (c).0 (d).None of these

If y=ae^(mx)+be^(-mx) , then (d^2y)/dx^2-m^2y is equals to (a). m^2(ae^(mx)-be^(mx)) (b).1 (c).0 (d).None of these

If y=Ae^(5x) , then (d^(2)y)/(dx^(2)) is equal to

If y=ae^(mx)+be^(-mx) , then y_(2) is :

If y= ae^(nx)+be^(-nx),then (d^2y)/(dx^2)-n^2y is equal to