Home
Class 12
MATHS
[int(13)^(10)|1+a^(2)-b^(2)quad 2ab,-2b]...

[int_(13)^(10)|1+a^(2)-b^(2)quad 2ab,-2b],[2ab,1-a^(2)+b^(2)quad 2a],[2b,-2aquad 1-a^(2)-b^(2)|]|=(1+a^(2)+b^(2))^(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

|[1+a^(2)-b^(2),2ab,-2b],[2ab,1-a^(2)+b^(2),2a],[2b,-2a,1-a^(2)-b^(2)]| =

Show that |(1+a^(2)-b^(2),2ab,-2b),(2ab,1-a^(2)+b^(2),2a),(2b,-2a,1-a^(2)-b^(2))|=(1+a^(2)+b^(2))^(3)

1+a^(2)-b^(2),2ab,-2b2ab,1-a^(2)+b^(2),2a2b,-2a,1-a^(2)-b^(2)]|=(1+a^(2)+b^(2))^(3)

Prove that |{:(1+a^(2)-b^(2),2ab,-2b),(2ab,1-a^(2)+b^(2),2a),(2b,-2a,1-a^(2)-b^(2)):}|=(1+a^(2)+b^(2))^(3)

By using properties of determinants , show that : {:[( 1+a^(2) -b^(2) ,2ab , -2b),( 2ab, 1-a^(2) +b^(2) , 2a),( 2b, -2a, 1-a^(2) -b^(2)) ]:}=( 1+a^(2) +b^(2)) ^(3)

Show that |{:(1+a^(2)-b^(2),,2ab,,-2b),(2ab,,1-a^(2)+b^(2),,2a),(2b,,-2a,,1-a^(2)-b^(2)):}| = (1+a^(2) +b^(2))^(3)

Show that |{:(1+a^(2)-b^(2),,2ab,,-2b),(2ab,,1-a^(2)+b^(2),,2a),(2b,,-2a,,1-a^(2)-b^(2)):}| = (1+a^(2) +b^(2))^(3)

|(1+a^(2)-b^(2), 2ab, -2b),(2a, 1 -a^(2)+b^(2),2a),(2b, -2a, 1-a^2-b^2)|=(1 + a^2 + b^2)^(3) .