Home
Class 12
MATHS
" Show that "int(0)^(1)(log(1+x))/(1+x^(...

" Show that "int_(0)^(1)(log(1+x))/(1+x^(2))dx=(pi)/(8)log2

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)(log|1+x|)/(1+x^(2))dx=(pi)/(8)log2

If int_(0)^(1) (log(1+x)/(1+x^(2))dx=

" 8."int_(0)^(oo)(log x)/(1+x^(2))dx

Using property of define integrals, prove that : int_(0)^(1) (log(1+x))/(1+x^(2))=(pi)/8log2

int_(0)^(1)(logx)/(sqrt(1-x^(2)))dx=-(pi)/(2)(log2)

int_(0)^(1)(log x)/(sqrt(1-x^(2)))dx

Show that int_(0)^(1)log((1-x)/(x))dx=0

Show that int_0^1(log(1+x))/(1+x^2)dx=pi/8log2

Prove that : int_(0)^(1) (log x)/(sqrt(1-x^(2)))dx=-(pi)/(2)log 2