Home
Class 12
MATHS
If y = cos ax, prove that |(y,y1,y2),(y3...

If `y = cos ax`, prove that `|(y,y_1,y_2),(y_3,y_4,y_5),(y_6,y_7,y_8)|=0` where `y_r=d^r/(dx^r).y`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sin mx the value of the determinant |{:(y,y_(1),y_(2)),(y_(3),y_(4),y_(5)),(y_(6),y_(7),y_8):}| where y_(n)=(d^(n)y)/(dx^(n)) is

If y=sin mx the value of the determinant |{:(y,y_(1),y_(2)),(y_(3),y_(4),y_(5)),(y_(6),y_(7),y_8):}| where y_(n)=(d^(n)y)/(dx^(n)) is

If y= cos ax and y_n is n^(th) derivative of y, then |{:(y,y_1,y_2),(y_3,y_4,y_5),(y_6,y_7,y_8):}| is equal to

If y = sin mx then the value of |[y,y_1,y_2],[y_3,y_4,y_5],[y_6,y_5,y_7]| where y shows the order of derivative) is

If y =sinpx and y_n is the nth derivative of y , then find the value of |{:(y,y_1,y_2),(y_3,y_4,y_5),(y_6,y_7,y_8):}|

if y= sin mx, them the value of the determinant |{:(y,,y_(1),,y_(2)),(y_(3),,y_(4),,y_(5)),(y_(6),,y_(7),,y_(8)):}|" Where " y_(n)=(d^(n)y)/(dx^(n)) " is "

if y= sin mx, them the value of the determinant |{:(y,,y_(1),,y_(2)),(y_(3),,y_(4),,y_(5)),(y_(6),,y_(7),,y_(8)):}|" Where " y_(n)=(d^(n)y)/(dx^(n)) " is "

if y= sin mx, them the value of the determinant |{:(y,,y_(1),,y_(2)),(y_(3),,y_(4),,y_(5)),(y_(6),,y_(7),,y_(8)):}|" Where " y_(n)=(d^(n)y)/(dx^(n)) " is "

if y= sin mx, them the value of the determinant |{:(y,,y_(1),,y_(2)),(y_(3),,y_(4),,y_(5)),(y_(6),,y_(7),,y_(8)):}|" Where " y_(n)=(d^(n)y)/(dx^(n)) " is "