Home
Class 12
MATHS
If ai, bi in N for i 1,2,3, then coeffic...

If `a_i, b_i in N` for i 1,2,3, then coefficient of x in the determinant;`|((1+x)^(a_1b_1),(1+x)^(a_1b_2),(1+x)^(a_1b_3)),((1+x)^(a_2b_1),(1+x)^(a_2b_2),(1+x)^(a_2b_3)), ((1+x)^(a_3b_1),(1+x)^(a_3b_2),(1+x)^(a_3b_3))|`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the coefficient of x in the determinant |((1+x)^(a_1 b_1),(1+x)^(a_1 b_2),(1+x)^(a_1 b_3)),((1+x)^(a_2 b_2),(1+x)^(a_2 b_2),(1+x)^(a_2 b_3)),((1+x)^(a_3 b_3),(1+x)^(a_3 b_2),(1+x)^(a_3 b_3))|=0.

Find the coefficient of x in the determinant |{:((1+x)^(a_(1)b_(1)),(1+x)^(a_(1)b_(2)),(1+x)^(a_(1)b_(3))),((1+x)^(a_(2)b_(1)),(1+x)^(a_(2)b_(2)),(1+x)^(a_(2)b_(3))),((1+x)^(a_(3)b_(1)),(1+x)^(a_(3)b_(2)),(1+x)^(a_(3)b_(3))):}|

Find the coefficient of x in the determinant |{:((1+x)^(a_(1)b_(1)),(1+x)^(a_(1)b_(2)),(1+x)^(a_(1)b_(3))),((1+x)^(a_(2)b_(1)),(1+x)^(a_(2)b_(2)),(1+x)^(a_(2)b_(3))),((1+x)^(a_(3)b_(1)),(1+x)^(a_(3)b_(2)),(1+x)^(a_(3)b_(3))):}|

|[2a_1b_1, a_1b_2+a_2b_1, a_1b_3+a_3b_1] , [a_1b_2+a_2b_1, 2a_2b_2, a_2b_3+a_3b_2] , [a_1b_3+a_3b_1, a_3b_2+a_2b_3, 2a_3b_3]|=

Prove that : {:|(a_1x_1+b_1y_1,a_1x_2+b_1y_2,a_1x_3+b_1y_3),(a_2x_1+b_2y_1,a_2x_2+b_2y_2,a_2x_3+b_2y_3),(a_3x_1+b_3y_1,a_3x_2+b_3y_2,a_3x_3+b_3y_3)|

Prove that if alpha, beta, gamma !=0 then |(alpha+a_1b_1, a_1b_2, a_1b_3), (a_2b_1, beta+a_2b_2, a_2b_3), (a_3b_1, a_3b_2, gamma+a_3b_3)|=alpha beta gamma [1+(a_1b_1)/alpha + (a_2b_2)/beta+(a_3b_3)/gamma]

Show that if x_(1),x_(2),x_(3) ne 0 |{:(x_(1) +a_(1)b_(1),,a_(1)b_(2),,a_(1)b_(3)),(a_(2)b_(1),,x_(2)+a_(2)b_(2),,a_(2)b_(3)),(a_(3)b_(1),,a_(3)b_(2),,x_(3)+a_(3)b_(3)):}| =x_(1)x_(2)x_(3) (1+(a_(1)b_(1))/(x_(1))+(a_(2)b_(2))/(x_(2))+(a_(3)b_(3))/(x_(3)))

Show that if x_(1),x_(2),x_(3) ne 0 |{:(x_(1) +a_(1)b_(1),,a_(1)b_(2),,a_(1)b_(3)),(a_(2)b_(1),,x_(2)+a_(2)b_(2),,a_(2)b_(3)),(a_(3)b_(1),,a_(3)b_(2),,x_(3)+a_(3)b_(3)):}| =x_(1)x_(2)x_(3) (1+(a_(1)b_(1))/(x_(1))+(a_(2)b_(2))/(x_(2))+(a_(3)b_(3))/(x_(3)))

Show that if x_(1),x_(2),x_(3) ne 0 |{:(x_(1) +a_(1)b_(1),,a_(1)b_(2),,a_(1)b_(3)),(a_(2)b_(1),,x_(2)+a_(2)b_(2),,a_(2)b_(3)),(a_(3)b_(1),,a_(3)b_(2),,x_(3)+a_(3)b_(3)):}| =x_(1)x_(2)x_(3) (1+(a_(1)b_(1))/(x_(1))+(a_(2)b_(2))/(x_(2))+(a_(3)b_(3))/(x_(3)))