Home
Class 12
MATHS
If f,g,a n dh are differentiable func...

If `f,g,a n dh` are differentiable functions of `xa n d(x)=|fgh(xf)'(xg)'(x h)'(x^(f2)f)' '(x^2g)' '(x^2h)' '|` prove that `^(prime)=|fgff'g' h '(x^3f' ')'(x^3g' ')'(x^3h ' ')'|`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f,g,a n dh are differentiable functions of xa n d(x)=|fgh(xf)'(xg)'(x h)'(x^(f2)f)' '(x^2g)' '(x^2h)|' prove Delta' =| (f g h f' g' h' (x^3f'' ')'(x^3g'' ')'(x^3h ' ')'|

If f,g,a n d \ h are differentiable functions of x and d(x)=|[f,g,h],[(xf)',(xg)',(x h)'],[(x^(2)f)'',(x^2g)'',(x^2h)'']| prove that d^(prime)(x)=|[f,g,h],[f',g',h'],[(x^3f' ')',(x^3g' ')',(x^3h ' ')']|

If f,g,a n d \ h are differentiable functions of x and d(x)=|[f,g,h],[(xf)',(xg)',(x h)'],[(x^(2)f)'',(x^2g)'',(x^2h)'']| prove that d^(prime)(x)=|[f,g,h],[f',g',h'],[(x^3f' ')',(x^3g' ')',(x^3h ' ')']|

If f,g , and h are differentiable functions of x and "delta"=|[f,g,h],[(xf)',(xg)',(x h)'],[(x^2f)' ',(x^2g)' ',(x^2h)' ']| prove that "delta"^(prime)=|[f,g,f],[f',g', h '],[(x^3f' ')',(x^3g' ')',(x^3h ' ')']|

If f,g, and h are differentiable functions of x and (delta) = |[f,g,h], [(xf)',(xg)',(xh)'],[(x^2f)' ',(x^2g)' ',(x^2h)' ']| prove that delta^(prime) = |[f,g,h],[f',g', h],[ (x^3f' ')',(x^3g' ')',(x^3h ' ')']|

If f,g, and h are differentiable functions of x and (delta) = |[f,g,h], [(xf)',(xg)',(xh)'],[(x^2f)' ',(x^2g)' ',(x^2h)' ']| prove that delta^(prime) = |[f,g,h],[f',g', h],[ (x^3f' ')',(x^3g' ')',(x^3h ' ')']|

Let f,g, h be differentiable functions of x. if Delta = |(f,g,h),((xf)',(xg)',(xh)'),((x^(2) f)'',(x^(2)g)'',(x^(2) h)'')|and, Delta' = |(f,g,h),(f',g',h'),((x^(n)f'')',(x^(n) g'')',(x^(n) h'')')| , then n =

Let f,g, h be differentiable functions of x. if Delta = |(f,g,h),((xf)',(xg)',(xh)'),((x^(2) f)'',(x^(2)g)'',(x^(2) h)'')|and, Delta' = |(f,g,h),(f',g',h'),((x^(n)f'')',(x^(n) g'')',(x^(n) h'')')| , then n =

If f,g and h are differentiable functions of x and Delta = |{:(f , g , h), ((xf)' , (xg)' , (xh)'), ((x^(2) f)'' , (x^(2) g)'', (x^(2) h)''):}| then prove that Delta'=|{:(f , g , h), (f' , g' , h'), ((x^(3) f'')' , (x^(3) g'')', (x^(3) h)'')':}| .