Home
Class 12
MATHS
Let g(x) be the inverse of an invertibl...

Let `g(x)` be the inverse of an invertible function `f(x)` which is differentiable at `x=c` . Then `g^(prime)(f(x))` equal. (a)`f^(prime)(c)` (b) `1/(f^(prime)(c))` (c) `f(c)` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Let g(x) be the inverse of an invertible function f(x), which is differentiable for all x, then g'f(x) is equal to

Let g(x) be the inverse of an invertible function f(x), which is differentiable for all x, then g''f(x) is equal to

Let g(x) be the inverse of an invertible function f(x) which is differentiable at x=c . Then g'(f(x)) equal.(a) f'(c)( b) (1)/(f'(c)) (c) f(c) (d) none of these

Let g(x) be the inverse of an invertible function f(x) which is derivable at x=3 . If f(3)=9 and f^(prime)(3)=9 , write the value of g^(prime)(9) .

Let g(x) be the inverse of an invertible function f(x), which is differentiable for all real xdot Then g^('')(f(x)) equals. (a) -(f^('')(x))/((f^'(x))^3) (b) (f^(prime)(x)f^('')(x)-(f^(prime)(x))^3)/(f^(prime)(x)) (c) (f^(prime)(x)f^('')(x)-(f^(prime)(x))^2)/((f^(prime)(x))^2) (d) none of these

Let g(x) be the inverse of an invertible function f(x), which is differentiable for all real xdot Then g^('')(f(x)) equals. (a) -(f^('')(x))/((f^'(x))^3) (b) (f^(prime)(x)f^('')(x)-(f^(prime)(x))^3)/(f^(prime)(x)) (c) (f^(prime)(x)f^('')(x)-(f^(prime)(x))^2)/((f^(prime)(x))^2) (d) none of these

Let g(x) be the inverse of an invertible function f(x), which is differentiable for all real xdot Then g^('')(f(x)) equals. (a) -(f^('')(x))/((f^'(x))^3) (b) (f^(prime)(x)f^('')(x)-(f^(prime)(x))^3)/(f^(prime)(x)) (c) (f^(prime)(x)f^('')(x)-(f^(prime)(x))^2)/((f^(prime)(x))^2) (d) none of these

Let g(x) be the inverse of an invertible function f(x), which is differentiable for all real xdot Then g^('')(f(x)) equals. (a) -(f^('')(x))/((f^'(x))^3) (b) (f^(prime)(x)f^('')(x)-(f^(prime)(x))^3)/(f^(prime)(x)) (c) (f^(prime)(x)f^('')(x)-(f^(prime)(x))^2)/((f^(prime)(x))^2) (d) none of these

Let g(x) be the inverse of an invertible function f(x), which is differentiable for all real xdot Then g^(f(x)) equals. -(f^(x))/((f^'(x))^3) (b) (f^(prime)(x)f^(x)-(f^(prime)(x))^3)/(f^(prime)(x)) (f^(prime)(x)f^(x)-(f^(prime)(x))^2)/((f^(prime)(x))^2) (d) none of these