Home
Class 12
MATHS
if f(x)=(cos^2x-sin^2x-1)/(sqrt(x^2+1)-1...

if `f(x)=(cos^2x-sin^2x-1)/(sqrt(x^2+1)-1) , x !=0` and `f(x)=k , x=0` is continuous at `x=0 ` then `k=`

Promotional Banner

Similar Questions

Explore conceptually related problems

if f(x)=(cos^(2)x-sin^(2)x-1)/(sqrt(x^(2)+1)-1),x!=0 and f(x)=k,x=0 is continuous at x=0 then k=

If f(x)={(cos^2x-sin^2x-1)/(sqrt(x^2+1)-1), x!=0,and f(x)=k , x=0" is continuous at "x=0,"find " k

If f(x)={(cos^2x-sin^2x-1)/(sqrt(x^2+1)-1),\ \ \ x!=0 \ \ \ \ k, \ \ \ x=0 is continuous at x=0 , find kdot

If quad f(x)={(cos^(2)x-s in^(2)x-1)/(sqrt(x^(2)+1)-1),quad x!=0k,quad x=0 is continuous at x=0, find k

If f9x),={(cos^(2)x-sin^(2)x-1)/(sqrt(x^(2)+1)-1)x,!=0,x=0, is continuous at x=0, find k

Find k in R if f(x) = {:{((cos^2 x - sin^2 x -1)/(sqrt(x^2+1) - 1), x ne 0), (k, x = 0):} is continuous at 0.

If the function f(x) = (cos^(2)x - sin^(2)x-1)/(sqrt(x^(2)+1)-1), x != 0 , is continuous at x = 0, then f(0) is equal to

If the function f(x) = (cos^(2)x - sin^(2)x-1)/(sqrt(x^(2)+1)-1), x != 0 , is continuous at x = 0, then f(0) is equal to

if f(x)=(sin^(-1)x)/(x),x!=0 and f(x)=k,x=0 function continuous at x=0 then k==