Home
Class 12
MATHS
|[x+lambda, 2x, 2x], [2x, x+lambda, 2x],...

`|[x+lambda, 2x, 2x], [2x, x+lambda, 2x], [2x, 2x, x+lambda]| =(5x+ lambda)(lambda-x)^(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If |(x+lambda,x,x),(x,x+lambda,x),(x,x,x+lambda)| = 0, (lambda != 0) then a) x = - lambda//3 b) x = 3 lambda c)x = 0 d)None of these

The period of the function f(x) = lambda| sin x| + lambda^(2) | cos x| + g (lambda) is (lambdai)/(2) , if lambda is

the values of lambda for which (lambda^(2)-3 lambda+2)x^(2)+(lambda^(2)-5 lambda+6)+lambda^(2)-4=0 is identity in x is

The value of lambda for which the equation lambda^2 - 4lambda + 3+ (lambda^2 + lambda -2)x + 6x^2 - 5x^3 =0 will have two roots equal to zero is

If A satisfies the equation x^3-5x^2+4x+lambda=0 , then A^(-1) exists if lambda!=1 (b) lambda!=2 (c) lambda!=-1 (d) lambda!=0

If the equation (lambda^(2)-5 lambda+6)x^(2)+(lambda^(2)-3 lambda+2)x+(lambda^(2)-4)=0 is satisfied by more then two values of x then lambda=

If A satisfies the equation x^3-5x^2+4x+lambda=0 , then A^(-1) exists if (a) lambda!=1 (b) lambda!=2 (c) lambda!=-1 (d) lambda!=0

If A satisfies the equation x^3-5x^2+4x+lambda=0 , then A^(-1) exists if (a) lambda!=1 (b) lambda!=2 (c) lambda!=-1 (d) lambda!=0

For any lambda in R, the locus x^(2)+y^(2)-2 lambda x-2 lambda y+lambda^(2)=0 touches the line

The values of lambda for which the function f(x)=lambda x^(3)-2 lambda x^(2)+(lambda+1)x+3 lambda is increasing through out number line (a) lambda in(-3,3)( b) lambda in(-3,0)( c )lambda in(0,3) (d) lambda in(1,3)