Home
Class 11
MATHS
(1)/(3)((1)/(3)),(1)/(2)x-cos^(2)6x=sin4...

(1)/(3)((1)/(3)),(1)/(2)x-cos^(2)6x=sin4x sin8x

Promotional Banner

Similar Questions

Explore conceptually related problems

cos ^(2) 2x -cos ^(2) 6x = sin 4x sin 8x

cos ^(2) 2x -cos ^(2) 6x = sin 4x sin 8x

cos ^(2) 2x -cos ^(2) 6x = sin 4x sin 8x

cos ^(2) 2x -cos ^(2) 6x = sin 4x sin 8x

cos ^(2) 2x -cos ^(2) 6x = sin 4x sin 8x

Prove that: cos^(2)2x-cos^(2)6x=sin4x sin8x

Prove that cos^(2)2x-cos^(2)6x=sin4x.sin8x ?

Prove that cos^2 2x-cos^2 6x=sin4x sin8x

Prove that: cos^2 2x-cos^2 6x= sin4x sin8x

The integral int(sin^(2)x cos^(2)x)/((sin^(5)x+cos^(3)x sin^(2)x+sin^(3)x cos^(2)x+cos^(5)x)^(2))dx is equal to (1) (1)/(3(1+tan^(3)x))+C(2)(-1)/(3(1+tan^(3)x))+C(3)(1)/(1+cot^(3)x)+C(4)(-1)/(1+cot^(3)x)+C