Home
Class 10
MATHS
Let the sum of n, 2n, 3n terms of an A.P...

Let the sum of n, 2n, 3n terms of an A.P. be `S_1,""""S_2` and `S_3` , respectively, show that `S_3=3(S_2-S_1)` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If the sum of first n,2n,3n terms of an A.P. be S_1 , S_2 and S_3 respectively then prove that S_3=3(S_2-S_1)

The sum of n, 2n, 3n terms of an A.P. are S_1, S_2, S_3 respectively. Prove that S_3 = 3(S_2 - S_1)

Let the sum of n,2n,3n terms of an A.P.be S_(1),S_(2) and respectively,show that S_(3)=3(S_(2)-S_(1))

If the sum of first n,2n,3n terms of an A.P. be S_1 , S_2 and S_3 respectively then prove that S_1+S_3=2S_2

If the sum of n, 2n, 3n terms of an A.P are S_(1), S_(2), S_(3) , respectively, prove that S_(3) = 3 (S_(2) -S_(1)).

If the sums of n, 2n and 3n terms of an A.P. be S_(1), S_(2), S_(3) respectively, then show that, S_(3) = 3(S_(2) - S_(1)) .

The sum of n ,2n ,3n terms of an A.P. are S_1S_2, S_3, respectively. Prove that S_3=3(S_2-S_1)dot

The sum of n ,2n ,3n terms of an A.P. are S_1S_2, S_3, respectively. Prove that S_3=3(S_2-S_1)dot

If the sum of n , 2n , 3n terms of an AP are S_1,S_2,S_3 respectively . Prove that S_3=3(S_2-S_1)