Home
Class 11
MATHS
((8(1+(3)/(1))+(1+(5)/(4))+(1+(7)/(9))--...

((8(1+(3)/(1))+(1+(5)/(4))+(1+(7)/(9))--7(4+(2n+1)/(n^(2))))/(4^(n)-3n-(1)/(n)=1)=(n+(2n+1)/(n^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that by using the principle of mathematical induction for all n in N : (1+(3)/(1))(1+(5)/(4))(1+(7)/(9))....(1_+((2n+1))/(n^(2)))= (n+1)^(2)

Prove that by using the principle of mathematical induction for all n in N : (1+(3)/(1))(1+(5)/(4))(1+(7)/(9))....(1_+((2n+1))/(n^(2)))= (n+1)^(2)

(1+3/1)(1+5/4)(1+7/9)...(1+((2n+1))/n^(2))=(n+1)^(2) forall n in N.

(1^(2))/(1.3)+(2^(2))/(3.5)+(3^(2))/(5.7)+.....+(n^(2))/ ((2n-1)(2n+1))=((n)(n+1))/((2(2n+1)))

Prove the following by using the principle of mathematical induction for all n in Nvdots(1+(3)/(1))(1+(5)/(4))(1+(7)/(9))...(1+((2n+1))/(n^(2)))=(n+1)^(2)

(2.3^(n+1)+7.3^(n-1))/(3^(n+1)-2((1)/(3))^(1-n))=

lim_(n rarr oo)((n^(3)-2n^(2)+1)^((1)/(2))+(n^(4)+1)^((1)/(3 ))))/((n^(6)+6n^(5)+2)^((1)/(4))-(n^(7)+3n^(2)+1)^((1 )/(5)))

By the principle of mathematical induction prove that the following statements are true for all natural numbers 'n' (a) (1)/(1.3)+(1)/(3.5)+(1)/(5.7)+......+(1)/((2n-1)(2n+1)) =(n)/(2n+1) (b) (1)/(1.4)+(1)/(4.7)+(1)/(7.10)+......+(1)/((3n-2)(3n+1)) =(n)/(3n+1)

Prove that: (1)/(2)nC_(1)-(2)/(3)nC_(2)+(3)/(4)nC_(3)-(4)/(5)nC_(4) +....+((-1)^(n+1)n)/(n+1)*nC_(n)=(1)/(n+1)