Home
Class 12
MATHS
If f(x) = {(4x,;xlt0), (1,;x=0), (3x^2,;...

If `f(x) = {(4x,;xlt0), (1,;x=0), (3x^2,;xgt0):}` then `lim_(x rarr 0) f(x)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

For the function f(x)= {(x-1,x lt 0),(1/4,x=0) ,(x^2 , xgt0):} then lim_(x rarr0^(+))f(x) and lim_(x rarr0^(-))f(x) are

If f(x)={(x-1",",xlt0),(1/4",",x=0),(x^2",",xgt0):} , then

If f(x)=x,x 0 then lim_(x rarr0)f(x) is equal to

If f(x)={{:(x","" "xlt0),(1","" "x=0),(x^(2)","" "xgt0):}," then find " lim_(xto0) f(x)" if exists.

If f(x)={{:(x","" "xlt0),(1","" "x=0),(x^(2)","" "xgt0):}," then find " lim_(xto0) f(x)" if exists.

If f(x)={{:(x","" "xlt0),(1","" "x=0),(x^(2)","" "xgt0):}," then find " lim_(xto0) f(x)" if exists.

f(x)=e^x then lim_(x rarr 0) f(f(x))^(1/{f(x)} is

if f(x)={{:(2+x,xge0),(2-x,xlt0):} then lim_(x to 0) f(f(x)) is equal to

if f(x)={{:(2+x,xge0),(2-x,xlt0):} then lim_(x to 0) f(f(x)) is equal to (A) 0 (B) 4 (C) 2 (D) does not exist

Let f(x) be a function defined by f(x) = {{:((3x)/(|x|+2x),x ne 0),(0,x = 0):} Show that lim_(x rarr 0) f(x) does not exist.