Home
Class 11
PHYSICS
Velocity of a particle of mass 2 kg chan...

Velocity of a particle of mass `2 kg` change from `vecv_(1) =-2hati-2hatjm/s` to `vecv_(2)=(hati-hatj)m//s` after colliding with as plane surface.

Promotional Banner

Similar Questions

Explore conceptually related problems

The velocity (in m/s) of an object changes from vecv_(1) = 10 hati + 4hatj + 2hatk to vecv_(2) = 4hati + 2hatj + 3hatk in 5 second. Find the magnitude of average acceleration.

The velocity (in m/s) of an object changes from vecv_(1) = 10 hati + 4hatj + 2hatk "to" vecv_(2) = 4hati + 2hatj + 3hatk in 5 second. Find the magnitude of average acceleration.

The velocity (in m/s) of an object changes from vecv_(1) = 10 hati + 4hatj + 2hatk " to " vecv_(2) = 4hati + 2hatj + 3hatk in 5 second. Find the magnitude of average acceleration.

Velocity vectors of three masses 2kg,1kg and 3 kg are vecv_1 = (hati-2hatj+hatk) m/s,vecV_2 = (2hati +2hatj -hatk) m/s and vecv_3 respectively. If velocity vector of center of mass of the system is zero then value of vecv_3 will be

Velocity vectors of three masses 2kg,1kg and 3 kg are vecv_1 = (hati-2hatj+hatk) m/s,vecV_2 = (2hati +2hatj -hatk) m/s and vecv_3 respectively. If velocity vector of center of mass of the system is zero then value of vecv_3 will be

Two particles having position verctors vecr_(1)=(3hati+5hatj) metres and vecr_(2)=(-5hati-3hatj) metres are moving with velocities vecv_(1)=(4hati+3hatj)m//s and vecv_(2)=(alphahati+7hatj)m//s . If they collide after 2 seconds, the value of alpha is

Two particles having position verctors vecr_(1)=(3hati+5hatj) metres and vecr_(2)=(-5hati-3hatj) metres are moving with velocities vecv_(1)=(4hati+3hatj)m//s and vecv_(2)=(alphahati+7hatj)m//s . If they collide after 2 seconds, the value of alpha is

Two particles of masses m and 2 m has initial velocity vecu_(1)=2hati+3hatj(m)/(s) and vecu_(2)=-4hati+3hatj(m)/(s) Respectivley. These particles have constant acceleration veca_(1)=4hati+3hatj((m)/(s^(2))) and veca_(2)=-4hati-2hatj((m)/(s^(2))) Respectively. Path of the centre of the centre of mass of this two particle system will be: