Home
Class 12
MATHS
यदि sqrt(1-x^(2))+ sqrt(1-y^(2))=a (x-y)...

यदि `sqrt(1-x^(2))+ sqrt(1-y^(2))=a (x-y) ,` तब सिद्ध कीजिये की
` " "(dy)/(dx)= sqrt(((1-y^(2))/(1-x^(2))))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sqrt(1-x^(2) ) + sqrt(1-y^(2)) = x-y , then dy/dx =

If sqrt(1 - x^(2)) + sqrt(1 - y^(2)) = a(x - y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2))) .

If sqrt(1-x^(2)) + sqrt(1 -y^(2))= a(x-y) , then prove that (dy)/(dx)= sqrt((1-y^(2))/(1-x^(2))) . (Where |x| le 1, |y| le 1 )

(dy)/(dx)=(sqrt(x^(2)-1))/(sqrt(y^(2)-1))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))