Home
Class 11
MATHS
Prove by using principle of mathematical...

Prove by using principle of mathematical induction : `2^n lt 3^n, n in N`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove by using principle of mathematical induction :2^(n)<3^(n),n in N

Prove that by using the principle of mathematical induction for all n in N : (2n+7) lt (n+3)^(2)

Prove that by using the principle of mathematical induction for all n in N : (2n+7) lt (n+3)^(2)

Prove that by using the principle of mathematical induction for all n in N : (2n+7) lt (n+3)^(2)

Prove that by using the principle of mathematical induction for all n in N : 1+2+3+.....+n lt (1)/(8)(2n+1)^(2)

Prove that by using the principle of mathematical induction for all n in N : 1+2+3+.....+n lt (1)/(8)(2n+1)^(2)

Prove that by using the principle of mathematical induction for all n in N : 1+2+3+.....+n lt (1)/(8)(2n+1)^(2)

Prove that by using the principle of mathematical induction for all n in N : n(n+1)(n+5) is a multiple of 3

Prove that by using the principle of mathematical induction for all n in N : n(n+1)(n+5) is a multiple of 3

Prove that by using the principle of mathematical induction for all n in N : 1+ 3+ 3^(2)+ …. + 3^(n-1)= ((3^(n)-1))/(2)