Home
Class 12
MATHS
f(x) = sin^-1[x^2+1/2]+cos^-1[x^2-1/2], ...

`f(x) = sin^-1[x^2+1/2]+cos^-1[x^2-1/2]`, where [ . ] denotes the greatest integer function.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the range of the following function f(x)=sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , [.] denotes the Greatest integer function.

The range of sin^(-1)[x^(2)+1/2] + cos^(-1)[x^(2)- 1/2] , where [.] denotes the greatest integer function, is

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

f(x)=sin^(-1)[x^(2)+(1)/(2)]+cos^(-1)[x^(2)-(1)/(2)] where [.1 denotes the greatest integer function.

domin of f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

The value of int_(-1)^(1)sin^(-1)[x^(2)+(1)/(2)]dx+int_(-1)^(1) cos^(-1)[x^(2)-(1)/(2)]dx , where [.] denotes the greatest integer function , is

The value of int_(-1)^(1)sin^(-1)[x^(2)+(1)/(2)]dx+int_(-1)^(1) cos^(-1)[x^(2)-(1)/(2)]dx , where [.] denotes the greatest integer function , is

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

The range of the function y=2sin^(-1)[x^(2)+(1)/(2)]+cos^(-1)[x^(2)-(1)/(2)] is (where, [.] denotes the greatest integer function)